Robust investment strategies with two risky assets. (English) Zbl 07490737

Summary: In reality, investors are uncertain about the dynamics of the risky asset returns (e.g., the expected returns and the correlation between the returns of two risky assets). Consequently, investors make robust investment decisions with special concerns on the expected returns and correlations. In this paper, we propose a hierarchical rule for robust investment between two risky assets: select the relatively safe asset first and then decide how much to invest in the relatively risky asset to hedge the ambiguity embedded in the relatively safe asset. After introducing criteria for relative riskiness and cross-hedging for investors with a constant relative risk averse (CRRA) utility, we find that a typical investor would equally invest in the two risky assets regardless of their correlation when they are indistinguishable from the riskiness perspective. Furthermore, the investor will take a long or short position on the relatively risky asset if it can work as the cross-hedging instrument due to their correlation; otherwise, it will not be traded at all. These results provide a unified explanation for the observed “under-diversification”, “home bias”, and “portfolioinertia” in financial markets from the cross-hedging point of view.


91-XX Game theory, economics, finance, and other social and behavioral sciences
Full Text: DOI


[1] Attaoui, S.; Cao, W.; Duan, X.; Liu, H., Optimal capital structure, ambiguity aversion, and leverage puzzles, J. Econ. Dyn. Control, 129, 104176 (2021) · Zbl 1475.91393
[2] Boyle, P.; Garlappi, L.; Uppal, R.; Wang, T., Keynes meets markowitz: the trade-off between familiarity and diversification, Manag. Sci., 58, 2, 253-272 (2012)
[3] Calvet, L. E.; Campbell, J. Y.; Sodini, P., Down or out: assessing the welfare costs of household investment mistakes, J. Polit. Econ., 115, 5, 707-747 (2007)
[4] Chan, L. K.; Karceski, J.; Lakonishok, J., On portfolio optimization: forecasting covariances and choosing the risk model, Rev. Financ. Stud., 12, 5, 937-974 (1999)
[5] Chen, Z.; Epstein, L., Ambiguity, risk, and asset returns in continuous time, Econometrica, 70, 4, 1403-1443 (2002) · Zbl 1121.91359
[6] Chiu, C. H.; Zhou, X. Y., The premium of dynamic trading, Quant. Financ., 11, 1, 115-123 (2011) · Zbl 1210.91119
[7] Cooper, I.; Kaplanis, E., Home bias in equity portfolios, inflation hedging, and international capital market equilibrium, Rev. Financ. Stud., 7, 1, 45-60 (1994)
[8] Coval, J.; Moskowitz, T. J., Home bias at home: local equity preference in domestic portfolios, J. Financ., 54, 2045-2073 (1999)
[9] DeMiguel, V.; Garlappi, L.; Uppal, R., Optimal versus naive diversification: how inefficient is the 1/n portfolio strategy?, Rev. Financ. Stud., 22, 5, 1915-1953 (2009)
[10] Epstein, L. G.; Halevy, Y., Ambiguous correlation, Rev. Econ. Stud., 86, 2, 668-693 (2019) · Zbl 1439.91017
[11] Epstein, L. G.; Ji, S., Ambiguous volatility and asset pricing in continuous time, Rev. Financ. Stud., 26, 7, 1740-1786 (2013)
[12] Epstein, L. G.; Ji, S., Optimal learning under robustness and time-consistency, Oper. Res., forthcoming (2021)
[13] French, K. R.; Poterba, J. M., Investor diversification and international equity markets, Am. Econ. Rev., 81, 222-226 (1991)
[14] Garlappi, L.; Uppal, R.; Wang, T., Portfolio selection with parameter and model uncertainty: a multi-prior approach, Rev. Financ. Stud., 20, 1, 41-81 (2007)
[15] Guidolin, M.; Liu, H., Ambiguity aversion and underdiversification, J. Financ. Quant. Anal., 51, 4, 1297-1323 (2016)
[16] Hansen, L. P.; Sargent, T. J., Robustness (2008), Princeton University Press · Zbl 1134.93001
[17] Hansen, L. P.; Sargent, T. J., Four types of ignorance, J. Monet. Econ., 69, 97-113 (2015)
[18] Illeditsch, P. K., Ambiguous information, portfolio inertia, and excess volatility, J. Financ., 66, 6, 2213-2247 (2011)
[19] Illeditsch, P. K.; Ganguli, J. V.; Condie, S., Information inertia, J. Financ., 76, 1, 443-479 (2021)
[20] Jagannathan, R.; Ma, T., Risk reduction in large portfolios: why imposing the wrong constraints helps, J. Financ., 58, 4, 1651-1683 (2003)
[21] Jiang, J., Liu, J., Tian, W., Zeng, X., 2020. Limited diversification, portfolio inertia, and ambiguous correlation. Working paper.
[22] Kan, R., Wang, X., Zhou, G., 2020. Optimal portfolio choice with estimation risk : no risk-free asset case. Working paper.
[23] Lam, C. K.; Xu, Y.; Yin, G., Dynamic portfolio choice without cash, Quant. Financ., 19, 2, 313-326 (2019) · Zbl 1420.91423
[24] Lin, Q.; Riedel, F., Optimal consumption and portfolio choice with ambiguous interest rates and volatility, Econ. Theory, 71, 1189-1202. (2021) · Zbl 1484.91434
[25] Lin, Q.; Sun, X.; Zhou, C., Horizon-unbiased investment with ambiguity, J. Econ. Dyn. Control, 14, 103896 (2020) · Zbl 07214743
[26] Liu, H., Dynamic portfolio choice under ambiguity and regime switching mean returns, J. Econ. Dyn. Control, 35, 4, 623-640 (2011) · Zbl 1209.91150
[27] Luo, Y., Robustly strategic consumption-portfolio rules with informational frictions, Manag. Sci., 63, 4158-4174 (2017)
[28] Luo, Y.; Nie, J.; Wang, H., Ignorance, pervasive uncertainty, and household finance, J. Econ. Theory, forthcoming (2021) · Zbl 1481.91107
[29] Michaud, R. O.; Michaud, R. O., Efficient Asset Management: A Practical Guide to Stock Portfolio Optimization and Asset Allocation (2008), Oxford University Press
[30] Mitton, T.; Vorkink, K., Equilibrium underdiversification and the preference for skewness, Rev. Financ. Stud., 20, 4, 1255-1288 (2007)
[31] Pham, H.; Wei, X.; Zhou, C., Portfolio diversification and model uncertainty: a robust dynamic mean-variance approach, Math.Financ. (2021)
[32] Uppal, R.; Wang, T., Model misspecification and underdiversification, J. Financ., 58, 6, 2465-2486 (2003)
[33] Van Nieuwerburgh, S.; Veldkamp, L., Information acquisition and under-diversification, Rev. Econ. Stud., 77, 2, 779-805 (2010) · Zbl 1231.91421
[34] Zeng, Y.; Li, X.; Li, Z.; Yao, H., Optimal sharpe ratio in continuous-time markets with and without a risk-free asset, J. Ind. Manag. Opt., 13, 3, 1273-1290 (2016) · Zbl 1361.90047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.