×

Subspace confinement for switched linear systems. (English) Zbl 1360.15003

Summary: In this note, we introduce the asymptotic subspace confinement problem, generalizing the usual concept of convergence in discrete-time linear systems. Instead of precise convergence, subspace confinement only requires the convergence of states to a certain subspace of the state space, offering useful flexibility and applicability. We establish a criterion for deciding the asymptotic subspace confinement, drawing upon a general finiteness result for the infinite product of matrices. Our results indicate that the asymptotic subspace confinement problem is algorithmically decidable when an invariant subspace for the set of matrices and some polytope norms are given.

MSC:

15A03 Vector spaces, linear dependence, rank, lineability
15A60 Norms of matrices, numerical range, applications of functional analysis to matrix theory
40A20 Convergence and divergence of infinite products
47A30 Norms (inequalities, more than one norm, etc.) of linear operators
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aspnes J., Eren T., Goldenberg D. K., Morse A. S., Whiteley W., Yang Y. R., Anderson B. D. O. and Belhumeur P. N., A theory of network localization, IEEE Trans. Mobile Comput. 5 (2006), 1663-1678.; Aspnes, J.; Eren, T.; Goldenberg, D. K.; Morse, A. S.; Whiteley, W.; Yang, Y. R.; Anderson, B. D. O.; Belhumeur, P. N., A theory of network localization, IEEE Trans. Mobile Comput., 5, 1663-1678 (2006)
[2] Chevalier P. Y., Hendrickx J. M. and Jungers R. M., A switched system approach to the decidability of consensus, 21st International Symposium on Mathematical Theory of Networks and Systems (Groningen 2014), University of Groningen, Groningen (2014), 103-109.; Chevalier, P. Y.; Hendrickx, J. M.; Jungers, R. M., A switched system approach to the decidability of consensus, 21st International Symposium on Mathematical Theory of Networks and Systems, 103-109 (2014) · Zbl 1320.93073
[3] Daubechies I. and Lagarias J. C., Sets of matrices all infinite products of which converge, Linear Algebra Appl. 161 (1992), 227-263.; Daubechies, I.; Lagarias, J. C., Sets of matrices all infinite products of which converge, Linear Algebra Appl., 161, 227-263 (1992) · Zbl 0746.15015
[4] Dıaz J., Petit J. and Serna M., A random graph model for optical networks of sensors, IEEE Trans. Mobile Comput. 2 (2003), 186-196.; Dıaz, J.; Petit, J.; Serna, M., A random graph model for optical networks of sensors, IEEE Trans. Mobile Comput., 2, 186-196 (2003) · Zbl 1023.68505
[5] Elsner L. and Friedland S., Norm conditions for convergence of infinite products, Linear Algebra Appl. 250 (1997), 133-142.; Elsner, L.; Friedland, S., Norm conditions for convergence of infinite products, Linear Algebra Appl., 250, 133-142 (1997) · Zbl 0868.40001
[6] Guglielmi N. and Zennaro M., Finding extremal complex polytope norms for families of real matrices, SIAM J. Matrix Anal. Appl. 31 (2009), 602-620.; Guglielmi, N.; Zennaro, M., Finding extremal complex polytope norms for families of real matrices, SIAM J. Matrix Anal. Appl., 31, 602-620 (2009) · Zbl 1197.93129
[7] Guglielmi N. and Zennaro M., Canonical construction of polytope Barabanov norms and antinorms for sets of matrices, SIAM J. Matrix Anal. Appl. 36 (2015), 634-655.; Guglielmi, N.; Zennaro, M., Canonical construction of polytope Barabanov norms and antinorms for sets of matrices, SIAM J. Matrix Anal. Appl., 36, 634-655 (2015) · Zbl 1320.15017
[8] Hartfiel D. J., Nonhomegeneous Matrix Products, World Scientific, Singapore, 2002.; Hartfiel, D. J., Nonhomegeneous Matrix Products (2002) · Zbl 1011.15006
[9] Iommi G. and Yayama Y., Zero temperature limits of Gibbs states for almost-additive potentials, J. Stat. Phys. 155 (2014), 23-46.; Iommi, G.; Yayama, Y., Zero temperature limits of Gibbs states for almost-additive potentials, J. Stat. Phys., 155, 23-46 (2014) · Zbl 1339.37025
[10] Jadbabaie A., Lin J. and Morse A. S., Coordination of groups of mobile autonomous agents using nearest neighbor rules, IEEE Trans. Automat. Control 48 (2003), 988-1001.; Jadbabaie, A.; Lin, J.; Morse, A. S., Coordination of groups of mobile autonomous agents using nearest neighbor rules, IEEE Trans. Automat. Control, 48, 988-1001 (2003) · Zbl 1364.93514
[11] Kjäll J. A., Zaletel M. P., Mong R. S. K., Bardarson J. H. and Pollmann F., Phase diagram of the anisotropic spin-2 XXZ model: Infinite-system density matrix renormalization group study, Phys. Rev. B 87 (2013), Article ID 235106.; Kjäll, J. A.; Zaletel, M. P.; Mong, R. S. K.; Bardarson, J. H.; Pollmann, F., Phase diagram of the anisotropic spin-2 XXZ model: Infinite-system density matrix renormalization group study, Phys. Rev. B, 87 (2013)
[12] Kozyakin V., An annotated bibliography on convergence of matrix products and the theory of joint generalized spectral radius, Institute for Information Transmission Problems, Moscow, 2013.; Kozyakin, V., An annotated bibliography on convergence of matrix products and the theory of joint generalized spectral radius (2013)
[13] Kozyakin V., The Berger-Wang formula for the Markovian joint spectral radius, Linear Algebra Appl. 448 (2014), 315-328.; Kozyakin, V., The Berger-Wang formula for the Markovian joint spectral radius, Linear Algebra Appl., 448, 315-328 (2014) · Zbl 1321.15021
[14] Lagarias J. C. and Wang Y., The finiteness conjectures for the generalized spectral radius of a set of matrices, Linear Algebra Appl. 214 (1995), 17-42.; Lagarias, J. C.; Wang, Y., The finiteness conjectures for the generalized spectral radius of a set of matrices, Linear Algebra Appl., 214, 17-42 (1995) · Zbl 0818.15007
[15] Liu J. and Xiao M., Rank-one characterization of joint spectral radius of finite matrix family, Linear Algebra Appl. 438 (2013), 3258-3277.; Liu, J.; Xiao, M., Rank-one characterization of joint spectral radius of finite matrix family, Linear Algebra Appl., 438, 3258-3277 (2013) · Zbl 1267.15009
[16] Morris I. D., Mather sets for sequences of matrices and applications to the study of joint spectral radii, Proc. Lond. Math. Soc. (3) 107 (2013), 121-150.; Morris, I. D., Mather sets for sequences of matrices and applications to the study of joint spectral radii, Proc. Lond. Math. Soc. (3), 107, 121-150 (2013) · Zbl 1277.15009
[17] Shang Y., On the degree sequence of random geometric digraphs, Appl. Math. Sci. 4 (2010), 2001-2012.; Shang, Y., On the degree sequence of random geometric digraphs, Appl. Math. Sci., 4, 2001-2012 (2010) · Zbl 1219.05176
[18] Shang Y., Focusing of maximum vertex degrees in random faulty scaled sector graphs, Panamer. Math. J. 22 (2012), no. 2, 1-17.; Shang, Y., Focusing of maximum vertex degrees in random faulty scaled sector graphs, Panamer. Math. J., 22, 2, 1-17 (2012) · Zbl 1255.05178
[19] Shang Y., \({L^1}\) group consensus of multi-agent systems with switching topologies and stochastic inputs, Phys. Lett. A 377 (2013), 1582-1586.; Shang, Y., \({L^1}\) group consensus of multi-agent systems with switching topologies and stochastic inputs, Phys. Lett. A, 377, 1582-1586 (2013) · Zbl 1317.93019
[20] Wang X. and Cheng Z., Infinite products of uniformly paracontracting matrices, Linear Multilinear Algebra 64 (2016), no. 5, 856-862.; Wang, X.; Cheng, Z., Infinite products of uniformly paracontracting matrices, Linear Multilinear Algebra, 64, 5, 856-862 (2016) · Zbl 1346.65018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.