Kumar, Sarvesh; Ruiz-Baier, Ricardo Equal order discontinuous finite volume element methods for the Stokes problem. (English) Zbl 1330.76085 J. Sci. Comput. 65, No. 3, 956-978 (2015). Summary: The aim of this paper is to develop and analyze a family of stabilized discontinuous finite volume element methods for the Stokes equations in two and three spatial dimensions. The proposed scheme is constructed using a baseline finite element approximation of velocity and pressure by discontinuous piecewise linear elements, where an interior penalty stabilization is applied. A priori error estimates are derived for the velocity and pressure in the energy norm, and convergence rates are predicted for velocity in the \(L^2\)-norm under the assumption that the source term is locally in \(H^1\). Several numerical experiments in two and three spatial dimensions are presented to validate our theoretical findings. Cited in 17 Documents MSC: 76M12 Finite volume methods applied to problems in fluid mechanics 65N08 Finite volume methods for boundary value problems involving PDEs 65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs 65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs 76D07 Stokes and related (Oseen, etc.) flows 65N15 Error bounds for boundary value problems involving PDEs Keywords:Stokes equations; discontinuous Galerkin methods; stabilization; finite volume element methods; error analysis × Cite Format Result Cite Review PDF Full Text: DOI Link References: [1] Agmon, S.: Lectures on Elliptic Boundary Value Problems. AMS Providence, Rhode Island (2010) · Zbl 1221.35002 [2] Anaya, V., Mora, D., Ruiz-Baier, R.: An augmented mixed finite element method for the vorticity-velocity-pressure formulation of the Stokes equations. Comput. Methods Appl. Mech. Eng. 267, 261-274 (2013) · Zbl 1286.76039 · doi:10.1016/j.cma.2013.08.011 [3] Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749-1779 (2002) · Zbl 1008.65080 · doi:10.1137/S0036142901384162 [4] Badia, S., Codina, R., Gudi, T., Guzmán, J.: Error analysis of discontinuous Galerkin methods for the Stokes problem under minimal regularity. IMA J. Numer. Anal. (2013). doi:10.1093/imanum/drt023 · Zbl 1452.76040 [5] Baroli, D., Quarteroni, A., Ruiz-Baier, R.: Convergence of a stabilized discontinuous Galerkin method for incompressible nonlinear elasticity. Adv. Comput. Math. 39, 425-443 (2013) · Zbl 1271.74030 · doi:10.1007/s10444-012-9286-8 [6] Becker, R., Capatina, D., Joie, J.: Connections between discontinuous Galerkin and nonconforming finite element methods for the Stokes equations. Numer. Methods Partial Differ. Equ. 28, 1013-1041 (2012) · doi:10.1002/num.20671 [7] Bercovier, M., Engelman, M.: A finite element for the numerical solution of viscous incompressible flows. J. Comput. Phys. 30, 181-201 (1979) · Zbl 0395.76040 · doi:10.1016/0021-9991(79)90098-6 [8] Berggren, M., Ekström, S.E., Nordström, J.: A discontinuous Galerkin extension of the vertex-centered edge-based finite volume method. Commun. Comput. Phys. 5, 456-468 (2009) · Zbl 1364.76108 [9] Bi, C., Geng, J.: A discontinuous finite volume element method for second-order elliptic problems. Numer. Methods Partial Differ. Equ. 28, 425-440 (2012) · Zbl 1242.65218 · doi:10.1002/num.20626 [10] Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods, vol. 15 of Springer Series in Computational Mathematics. Springer, New York (1991) · Zbl 0788.73002 · doi:10.1007/978-1-4612-3172-1 [11] Bürger, R., Ruiz-Baier, R., Torres, H.: A stabilized finite volume element formulation for sedimentation-consolidation processes. SIAM J. Sci. Comput. 34, B265-B289 (2012) · Zbl 1246.65177 · doi:10.1137/110836559 [12] Cai, Z.: On the finite volume element method. Numer. Math. 58, 713-735 (1991) · Zbl 0731.65093 · doi:10.1007/BF01385651 [13] Chatzipantelidis, P., Makridakis, C., Plexousakis, M.: A-posteriori error estimates for a finite volume method for the Stokes problem in two dimensions. Appl. Numer. Math. 46, 45-58 (2003) · Zbl 1022.76032 · doi:10.1016/S0168-9274(03)00011-4 [14] Chou, S.C.: Analysis and convergence of a covolume method for the generalized Stokes problem. Math. Comput. 66, 85-104 (1997) · Zbl 0854.65091 · doi:10.1090/S0025-5718-97-00792-8 [15] Chung, E.T., Kim, H.H., Widlund, O.B.: Two-level overlapping Schwarz algorithms for a staggered discontinuous Galerkin method. SIAM J. Numer. Anal. 51(1), 47-67 (2013) · Zbl 1267.65193 · doi:10.1137/110849432 [16] Cockburn, B., Kanschat, G., Schötzau, D.: An equal-order DG method for the incompressible Navier-Stokes equations. J. Sci. Comput. 40, 188-210 (2009) · Zbl 1203.76080 · doi:10.1007/s10915-008-9261-1 [17] Cockburn, B., Kanschat, G., Schötzau, D., Schwab, C.: Local discontinuous Galerkin methods for the Stokes system. SIAM J. Numer. Anal. 40, 319-343 (2002) · Zbl 1032.65127 · doi:10.1137/S0036142900380121 [18] Cui, M., Ye, X.: Superconvergence of finite volume methods for the Stokes equations. Numer. Methods PDEs 25, 1212-1230 (2009) · Zbl 1170.76037 · doi:10.1002/num.20399 [19] Cui, M., Ye, X.: Unified analysis of finite volume methods for the Stokes equations. SIAM J. Numer. Anal. 48, 824-839 (2010) · Zbl 1305.76061 · doi:10.1137/090780985 [20] Ewing, R.E., Lin, T., Lin, Y.: On the accuracy of the finite volume element method based on piecewise linear polynomials. SIAM J. Numer. Anal. 39, 1865-1888 (2002) · Zbl 1036.65084 · doi:10.1137/S0036142900368873 [21] Feistauer, M., Felcman, J., Lukác̆ová-Medvid’ová, M.: Combined finite element-finite volume solution of compressible flow. J. Comput. Appl. Math. 63, 179-199 (1995) · Zbl 0852.76040 · doi:10.1016/0377-0427(95)00051-8 [22] Fortin, M.: Finite element solution of the Navier-Stokes equations. Acta Numer. 5, 239-284 (1993) · Zbl 0801.76043 · doi:10.1017/S0962492900002373 [23] Ganesan, S., Matthies, G., Tobiska, L.: Local projection stabilization of equal order interpolation applied to the Stokes problem. Math. Comput. 77, 2039-2060 (2008) · Zbl 1198.65214 · doi:10.1090/S0025-5718-08-02130-3 [24] Gatica, G.N., Márquez, A., Sánchez, M.A.: Analysis of a velocity-pressure-pseudostress formulation for the stationary Stokes equations. Comput. Methods Appl. Mech. Eng. 199, 1064-1079 (2010) · Zbl 1227.76030 · doi:10.1016/j.cma.2009.11.024 [25] Girault, V., Rivière, B., Wheeler, M.F.: A discontinuous Galerkin method with nonoverlapping domain decomposition for the Stokes and Navier-Stokes problems. Math. Comput. 74, 53-84 (2005) · Zbl 1057.35029 · doi:10.1090/S0025-5718-04-01652-7 [26] Girault, V., Wheeler, M.F.: Discontinuous Galerkin methods. In: Partial Differential Equations, Computational Methods in Applied Sciences, vol. 16, pp. 3-26 (2008) · Zbl 1149.65323 [27] Hansbo, P., Larson, M.G.: Discontinuous Galerkin methods for incompressible and nearly incompressible elasticity by Nitsche’s method. Comput. Methods Appl. Mech. Eng. 191, 1895-1908 (2002) · Zbl 1098.74693 · doi:10.1016/S0045-7825(01)00358-9 [28] Hansbo, P., Larson, M.G.: Piecewise divergence-free discontinuous Galerkin methods for Stokes flow. Commun. Numer. Meth. Eng. 24, 355-366 (2008) · Zbl 1138.76046 · doi:10.1002/cnm.975 [29] Kim, H.H., Chung, E.T., Lee, C.S.: A staggered discontinuous Galerkin method for the Stokes system. SIAM J. Numer. Anal. 51, 3327-3350 (2013) · Zbl 1282.76123 · doi:10.1137/120896037 [30] Kumar, S.: A mixed and discontinuous Galerkin finite volume element method for incompressible miscible displacement problems in porous media. Numer. Methods Partial Differ. Equ. 28, 1354-1381 (2012) · Zbl 1345.76081 · doi:10.1002/num.20684 [31] Kumar, S., Nataraj, N., Pani, A.K.: Discontinuous Galerkin finite volume element methods for second order linear elliptic problems. Numer. Meth. Partial Differ. Equ. 25, 1402-1424 (2009) · Zbl 1181.65140 · doi:10.1002/num.20405 [32] Lazarov, R., Ye, X.: Stabilized discontinuous finite element approximations for Stokes equations. J. Comput. Appl. Math. 198, 236-252 (2007) · Zbl 1101.76035 · doi:10.1016/j.cam.2005.12.028 [33] Li, J., Chen, Z.: A new stabilized finite volume method for the stationary Stokes equations. Adv. Comput. Math. 30, 141-152 (2009) · Zbl 1187.65120 · doi:10.1007/s10444-007-9060-5 [34] Lin, Y., Liu, J., Yang, M.: Finite volume element methods: an overview of recent developments. Int. J. Numer. Anal. Model. B 4, 14-24 (2013) · Zbl 1463.65349 [35] Liu, J., Mu, L., Ye, X.: An adaptive discontinuous finite volume element method for elliptic problems. J. Comput. Appl. Math. 235, 5422-5431 (2011) · Zbl 1227.65101 · doi:10.1016/j.cam.2011.05.051 [36] Liu, J., Mu, L., Ye, X., Jari, R.: Convergence of the discontinuous finite volume method for elliptic problems with minimal regularity. J. Comput. Appl. Math. 236, 4537-4546 (2012) · Zbl 1257.65061 · doi:10.1016/j.cam.2012.05.009 [37] Nicaise, S., Djadel, K.: Convergence analysis of a finite volume method for the Stokes system using non-conforming arguments. IMA J. Numer. Anal. 25, 523-548 (2005) · Zbl 1077.65112 · doi:10.1093/imanum/dri007 [38] Notsu, H.: Numerical computations of cavity flow problems by a pressure stabilized characteristic-curve finite element scheme. Trans. Jpn. Soc. Comput. Eng. Sci. 08, 20080032-20080051 (2008) [39] Quarteroni, A., Ruiz-Baier, R.: Analysis of a finite volume element method for the Stokes problem. Numer. Math. 118, 737-764 (2011) · Zbl 1230.65130 · doi:10.1007/s00211-011-0373-4 [40] Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations. Springer, Berlin (1997) · Zbl 1151.65339 [41] Ruiz-Baier, R., Torres, H.: Numerical solution of a multidimensional sedimentation problem using finite volume-elements. Appl. Numer. Math. (2014). doi:10.1016/j.apnum.2013.12.006 · Zbl 1320.76085 [42] Schötzau, D., Schwab, C., Toselli, A.: Mixed hp-DGFEM for incompressible flows. II. Geometric edge meshes. IMA J. Numer. Anal. 24, 273-308 (2004) · Zbl 1114.76046 · doi:10.1093/imanum/24.2.273 [43] Shahbazi, K., Fischer, P.F., Ethier, C.R.: A high-order discontinuous Galerkin method for the unsteady incompressible NavierStokes equations. J. Comput. Phys. 222, 391-407 (2007) · Zbl 1216.76034 · doi:10.1016/j.jcp.2006.07.029 [44] Toselli, A.: Hp discontinuous Galerkin approximations for the Stokes problem. Math. Models Methods Appl. Sci. 12, 1565-1597 (2002) · Zbl 1041.76045 · doi:10.1142/S0218202502002240 [45] Yang, Q., Jiang, Z.: A discontinuous mixed covolume method for elliptic problems. J. Comput. Appl. Math. 235, 2467-2476 (2011) · Zbl 1211.65145 · doi:10.1016/j.cam.2010.10.050 [46] Ye, X.: On the relationship between finite volume and finite element methods applied to the Stokes equations. Numer. Methods Partial Differ. Equ. 17, 440-453 (2001) · Zbl 1017.76057 · doi:10.1002/num.1021 [47] Ye, X.: A new discontinuous finite volume method for elliptic problems. SIAM J. Numer. Anal. 42, 1062-1072 (2004) · Zbl 1079.65116 · doi:10.1137/S0036142902417042 [48] Ye, X.: A discontinuous finite volume method for the Stokes problem. SIAM J. Numer. Anal. 44, 183-198 (2006) · Zbl 1112.65125 · doi:10.1137/040616759 [49] Yin, Z., Jiang, Z., Xu, Q.: A discontinuous finite volume method for the Darcy-Stokes equations. J. Appl. Math. 2012, 761242-761258 (2012) · Zbl 1264.76070 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.