Sakar, Fethiye Müge; Hussain, Saqib; Ahmad, Ibrar Application of Gegenbauer polynomials for biunivalent functions defined by subordination. (English) Zbl 1495.30013 Turk. J. Math. 46, No. 3, 1089-1098 (2022). MSC: 30C45 30C50 PDF BibTeX XML Cite \textit{F. M. Sakar} et al., Turk. J. Math. 46, No. 3, 1089--1098 (2022; Zbl 1495.30013) Full Text: DOI
Cotîrlǎ, Luminiţa-Ioana New classes of analytic and bi-univalent functions. (English) Zbl 07536354 AIMS Math. 6, No. 10, 10642-10651 (2021). MSC: 30C45 30C50 PDF BibTeX XML Cite \textit{L.-I. Cotîrlǎ}, AIMS Math. 6, No. 10, 10642--10651 (2021; Zbl 07536354) Full Text: DOI
Páll-Szabó, Ágnes Orsolya Extensions of coefficient estimates for new classes of bi-univalent functions defined by Sǎlǎgean integro-differential operator. (English) Zbl 1469.30031 J. Appl. Anal. 27, No. 1, 87-95 (2021). MSC: 30C45 30C50 PDF BibTeX XML Cite \textit{Á. O. Páll-Szabó}, J. Appl. Anal. 27, No. 1, 87--95 (2021; Zbl 1469.30031) Full Text: DOI
Páll-Szabó, Ágnes Orsolya; Wanas, Abbas Kareem Coefficient estimates for some new classes of bi-Bazilevič functions of Ma-Minda type involving the Sălăgean integro-differential operator. (English) Zbl 1468.30034 Quaest. Math. 44, No. 4, 495-502 (2021). MSC: 30C45 30C50 PDF BibTeX XML Cite \textit{Á. O. Páll-Szabó} and \textit{A. K. Wanas}, Quaest. Math. 44, No. 4, 495--502 (2021; Zbl 1468.30034) Full Text: DOI
Alimohammadi, Davood; Cho, Nak Eun; Adegani, Ebrahim Analouei Coefficient bounds for subclasses of analytic and bi-univalent functions. (English) Zbl 1499.30045 Filomat 34, No. 14, 4709-4721 (2020). MSC: 30C45 30C50 30C80 PDF BibTeX XML Cite \textit{D. Alimohammadi} et al., Filomat 34, No. 14, 4709--4721 (2020; Zbl 1499.30045) Full Text: DOI
Srivastava, H. M.; Eker, S. Sümer; Hamidi, S. G.; Jahangiri, J. M. Faber polynomial coefficient estimates for bi-univalent functions defined by the Tremblay fractional derivative operator. (English) Zbl 1409.30021 Bull. Iran. Math. Soc. 44, No. 1, 149-157 (2018). MSC: 30C45 30C50 30C80 PDF BibTeX XML Cite \textit{H. M. Srivastava} et al., Bull. Iran. Math. Soc. 44, No. 1, 149--157 (2018; Zbl 1409.30021) Full Text: DOI
Deniz, Erhan; Jahangiri, Jay M.; Hamidi, Samaneh G.; Kına, Sibel K. Faber polynomial coefficients for generalized bi-subordinate functions of complex order. (English) Zbl 1403.30007 J. Math. Inequal. 12, No. 3, 645-653 (2018). MSC: 30C45 30C80 PDF BibTeX XML Cite \textit{E. Deniz} et al., J. Math. Inequal. 12, No. 3, 645--653 (2018; Zbl 1403.30007) Full Text: DOI