Ma, Yingbin; Zhang, Xiaoxue Graphs with (strong) proper connection numbers \(m - 3\) and \(m - 4\). (English) Zbl 07677257 Appl. Math. Comput. 445, Article ID 127843, 11 p. (2023). MSC: 05Cxx 05-XX 05Dxx PDF BibTeX XML Cite \textit{Y. Ma} and \textit{X. Zhang}, Appl. Math. Comput. 445, Article ID 127843, 11 p. (2023; Zbl 07677257) Full Text: DOI OpenURL
Li, Zhenzhen; Wu, Baoyindureng Proper-walk connection of Hamiltonian digraphs. (English) Zbl 07531278 Appl. Math. Comput. 427, Article ID 127169, 7 p. (2022). MSC: 05C40 05C20 05C45 05C15 PDF BibTeX XML Cite \textit{Z. Li} and \textit{B. Wu}, Appl. Math. Comput. 427, Article ID 127169, 7 p. (2022; Zbl 07531278) Full Text: DOI OpenURL
Fiedorowicz, Anna; Sidorowicz, Elżbieta; Sopena, Éric Proper connection and proper-walk connection of digraphs. (English) Zbl 07425949 Appl. Math. Comput. 410, Article ID 126253, 15 p. (2021). MSC: 05C40 05C15 05C20 PDF BibTeX XML Cite \textit{A. Fiedorowicz} et al., Appl. Math. Comput. 410, Article ID 126253, 15 p. (2021; Zbl 07425949) Full Text: DOI arXiv OpenURL
Ma, Yingbin; Nie, Kairui (Strong) total proper connection of some digraphs. (English) Zbl 1470.05067 J. Comb. Optim. 42, No. 1, 24-39 (2021). MSC: 05C20 05C38 05C15 05C35 05C40 PDF BibTeX XML Cite \textit{Y. Ma} and \textit{K. Nie}, J. Comb. Optim. 42, No. 1, 24--39 (2021; Zbl 1470.05067) Full Text: DOI OpenURL
Li, Luyi; Li, Xueliang Digraphs with proper connection number two. (English) Zbl 1504.05109 Theor. Comput. Sci. 873, 64-75 (2021). MSC: 05C20 05C15 05C40 68Q25 PDF BibTeX XML Cite \textit{L. Li} and \textit{X. Li}, Theor. Comput. Sci. 873, 64--75 (2021; Zbl 1504.05109) Full Text: DOI OpenURL
Ducoffe, Guillaume; Marinescu-Ghemeci, Ruxandra; Popa, Alexandru On the (di)graphs with (directed) proper connection number two. (English) Zbl 1440.05104 Discrete Appl. Math. 281, 203-215 (2020). MSC: 05C20 05C15 05C40 68Q17 PDF BibTeX XML Cite \textit{G. Ducoffe} et al., Discrete Appl. Math. 281, 203--215 (2020; Zbl 1440.05104) Full Text: DOI HAL OpenURL
Gu, Ran; Deng, Bo; Li, Rui Note on directed proper connection number of a random graph. (English) Zbl 1428.05105 Appl. Math. Comput. 361, 169-174 (2019). MSC: 05C15 05C40 05C80 60C05 05C20 PDF BibTeX XML Cite \textit{R. Gu} et al., Appl. Math. Comput. 361, 169--174 (2019; Zbl 1428.05105) Full Text: DOI OpenURL
Goddard, Wayne; Melville, Robert Properly colored trails, paths, and bridges. (English) Zbl 1386.05058 J. Comb. Optim. 35, No. 2, 463-472 (2018). MSC: 05C15 05C38 05C35 PDF BibTeX XML Cite \textit{W. Goddard} and \textit{R. Melville}, J. Comb. Optim. 35, No. 2, 463--472 (2018; Zbl 1386.05058) Full Text: DOI OpenURL
Ducoffe, Guillaume; Marinescu-Ghemeci, Ruxandra; Popa, Alexandru On the (di)graphs with (directed) proper connection number two. (English) Zbl 1383.05130 Bassino, Frédérique (ed.) et al., LAGOS 2017. Selected papers of the 9th Latin-American algorithms, graphs, and optimization symposium, Marseille, France, September 11–15, 2017. Amsterdam: Elsevier. Electronic Notes in Discrete Mathematics 62, 237-242 (2017). MSC: 05C20 05C15 05C40 PDF BibTeX XML Cite \textit{G. Ducoffe} et al., Electron. Notes Discrete Math. 62, 237--242 (2017; Zbl 1383.05130) Full Text: DOI HAL OpenURL
Melville, Robert; Goddard, Wayne Coloring graphs to produce properly colored walks. (English) Zbl 1377.05097 Graphs Comb. 33, No. 5, 1271-1281 (2017). Reviewer: Iztok Peterin (Maribor) MSC: 05C40 05C15 05C38 05C78 PDF BibTeX XML Cite \textit{R. Melville} and \textit{W. Goddard}, Graphs Comb. 33, No. 5, 1271--1281 (2017; Zbl 1377.05097) Full Text: DOI arXiv OpenURL