Guevara, Andrés; Sanabria, José; Rosas, Ennis \(S\)-\(\mathcal{I}\)-convergence of sequences. (English) Zbl 1456.54001 Trans. A. Razmadze Math. Inst. 174, No. 1, 75-81 (2020). MSC: 54A20 PDF BibTeX XML Cite \textit{A. Guevara} et al., Trans. A. Razmadze Math. Inst. 174, No. 1, 75--81 (2020; Zbl 1456.54001) Full Text: Link
Turanli, Elif; Demir, İzzettin; Özbakir, Oya Bedre Some types of soft paracompactness via soft ideals. (English) Zbl 1449.54019 Int. J. Nonlinear Anal. Appl. 10, No. 2, 197-211 (2019). MSC: 54A40 54D20 54A05 06D72 PDF BibTeX XML Cite \textit{E. Turanli} et al., Int. J. Nonlinear Anal. Appl. 10, No. 2, 197--211 (2019; Zbl 1449.54019) Full Text: DOI
Yıldırım, Esra Dalan; Özbakır, Oya Bedre; Guler, Aysegul Caksu Some characterizations of \(\beta\)-paracompactness in ideal topological space. (English) Zbl 1424.54053 Eur. J. Pure Appl. Math. 12, No. 2, 270-278 (2019). MSC: 54D20 54A05 54C10 54G05 PDF BibTeX XML Cite \textit{E. D. Yıldırım} et al., Eur. J. Pure Appl. Math. 12, No. 2, 270--278 (2019; Zbl 1424.54053) Full Text: Link
Sanabria, José; Rosas, Ennis; Rajesh, Neelamegarajan; Carpintero, Carlos; Gómez, Amalia \(S\)-paracompactness modulo an ideal. (English) Zbl 1441.54014 Cubo 18, No. 1, 47-57 (2016). MSC: 54D20 54A05 PDF BibTeX XML Cite \textit{J. Sanabria} et al., Cubo 18, No. 1, 47--57 (2016; Zbl 1441.54014) Full Text: DOI