Ciesielski, Krzysztof Chris; Jasinski, Jakub An auto-homeomorphism of a Cantor set with derivative zero everywhere. (English) Zbl 1331.37012 J. Math. Anal. Appl. 434, No. 2, 1267-1280 (2016). By a delicate construction the authors prove the following:Theorem. There exists a nonempty compact subset \(X\subset \mathbb R\) with no isolated points and a differentiable bijection \(f:X\to X\), which is extendable to a differentable function \(F:\mathbb R \to \mathbb R\), and such the derivative \(f'(x)=0\) for all \(x\in X\) and \(f(P)\neq P\) for all proper subsets of \(X\) (thus \((X,f)\) is a minimal dynamical system).Moreover \(f\) satisfies certain local contractivity properties and has no fixed points. Thus it shows some borders for generalizations of the Banach fixed point Theorem to local versions. Reviewer: Zdzisław Dzedzej (Gdansk) Cited in 1 ReviewCited in 8 Documents MSC: 37B05 Dynamical systems involving transformations and group actions with special properties (minimality, distality, proximality, expansivity, etc.) 26A30 Singular functions, Cantor functions, functions with other special properties 54C30 Real-valued functions in general topology 54H20 Topological dynamics (MSC2010) 54H25 Fixed-point and coincidence theorems (topological aspects) 47H10 Fixed-point theorems Keywords:differentiable minimal dynamical systems; fixed point theorem; Cantor set PDF BibTeX XML Cite \textit{K. C. Ciesielski} and \textit{J. Jasinski}, J. Math. Anal. Appl. 434, No. 2, 1267--1280 (2016; Zbl 1331.37012) Full Text: DOI OpenURL References: [1] Banach, S., Sur LES opérations dans LES ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3, 133-181, (1922) · JFM 48.0201.01 [2] Birkhoff, G. D., Quelques théorèms sur le mouvement des systèmes dynamiques, Bull. Soc. Math. France, 40, 305-323, (1912) · JFM 43.0818.01 [3] Bruckner, A. M.; Steele, T. H., The Lipschitz structure of continuous self-maps of generic compact sets, J. Math. Anal. Appl., 188, 3, 798-808, (1994) · Zbl 0820.26001 [4] Bruin, H.; Keller, G.; Pierre, M. St., Adding machines and wild attractors, Ergodic Theory Dynam. Systems, 17, 6, 1267-1287, (1997) · Zbl 0898.58012 [5] Ciesielski, K. C.; Jasinski, J., Smooth Peano functions for perfect subsets of the real line, Real Anal. Exchange, 39, 1, 57-72, (2014) · Zbl 1301.26009 [6] Edelstein, M., An extension of Banach’s contraction principle, Proc. Amer. Math. Soc., 12, 7-10, (1961) · Zbl 0096.17101 [7] Edelstein, M., On fixed and periodic points under contractive mappings, J. Lond. Math. Soc., 37, 74-79, (1962) · Zbl 0113.16503 [8] Edrei, A., On mappings which do not increase small distances, Proc. Lond. Math. Soc., 3, 2, 272-278, (1952) · Zbl 0047.16301 [9] Foran, J., Fundamentals of real analysis, (1991), Marcel Dekker · Zbl 0744.26004 [10] George, F., Locally contractive maps on perfect Polish ultrametric spaces · Zbl 1461.37015 [11] Holmes, R. D., Fixed points for local radial contractions, (Proc. Seminar on Fixed Points Theory and Its Appl., Dalhousie Univ., 1975, (1976), Academic Press New York), 78-89 [12] Hu, T.; Kirk, W. A., Local contractions in metric spaces, Proc. Amer. Math. Soc., 68, 121-124, (1978) · Zbl 0388.54031 [13] Jarník, V., Sur l’extension du domaine de définition des fonctions d’une variable, qui laisse intacte la dé rivabilité de la fonction, Bull. Internat. Acad. Sci. Boheme, 1-5, (1923) [14] Jungck, G., Local radial contractions — a counter-example, Houston J. Math., 8, 501-506, (1982) · Zbl 0509.54027 [15] Koc, M.; Zajíček, L., A joint generalization of Whitney’s \(C^1\) extension theorem and aversa-laczkovich-preiss’ extension theorem, J. Math. Anal. Appl., 388, 1027-1039, (2012) · Zbl 1241.26008 [16] Kolyada, S.; Snoha, L., Minimal dynamical systems, Scholarpedia, 4, 11, 5803, (2009) [17] Nicol, M.; Petersen, K., Ergodic theory: basic examples and constructions, (Meyers, Robert A., Encyclopedia of Complexity and Systems Science, (2009), Springer), 2956-2980 [18] Petruska, G.; Laczkovich, M., Baire 1 functions, approximately continuous functions and derivatives, Acta Math. Acad. Sci. Hung., 25, 189-212, (1974) · Zbl 0279.26003 [19] Shchikhof, W. H., Ultrameric calculus, (2006), Cambridge University Press This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.