Effective properties of hierarchical fiber-reinforced composites via a three-scale asymptotic homogenization approach. (English) Zbl 07273382

Summary: The study of the properties of multiscale composites is of great interest in engineering and biology. Particularly, hierarchical composite structures can be found in nature and in engineering. During the past decades, the multiscale asymptotic homogenization technique has shown its potential in the description of such composites by taking advantage of their characteristics at the smaller scales, ciphered in the so-called effective coefficients. Here, we extend previous works by studying the in-plane and out-of-plane effective properties of hierarchical linear elastic solid composites via a three-scale asymptotic homogenization technique. In particular, the approach is adjusted for a multiscale composite with a square-symmetric arrangement of uniaxially aligned cylindrical fibers, and the formulae for computing its effective properties are provided. Finally, we show the potential of the proposed asymptotic homogenization procedure by modeling the effective properties of musculoskeletal mineralized tissues, and we compare the results with theoretical and experimental data for bone and tendon tissues.


74-XX Mechanics of deformable solids
Full Text: DOI Link


[1] Bae, WG, Kim, HN, Kim, D, et al. 25th anniversary article: scalable multiscale patterned structures inspired by nature: the role of hierarchy. Adv Mat 2013; 26(5): 675-700.
[2] Kim, CS, Randow, C, Sano, T. (eds.) Hybrid and hierarchical composite materials. New York: Springer, 2015.
[3] Yang, W, Chen, IH, Gludovatz, B, et al. Natural flexible dermal armor. Adv Mat 2012; 25(1): 31-48.
[4] Cowin, SC (ed.) Bone mechanics handbook. 2nd ed. Boca Raton, FL: CRC Press, 2001.
[5] Hori, M, Nemat-Nasser, S. On two micromechanics theories for determining micro-macro relations in heterogeneous solids. Mech Mat 1999; 31(10): 667-682.
[6] Hill, R. Elastic properties of reinforced solids: some theoretical principles. J Mech Physics Solids 1963; 11(5): 357-372. · Zbl 0114.15804
[7] Mura, T. Micromechanics of defects in solids. Dordrecht: Springer, 1987. · Zbl 0652.73010
[8] Bakhvalov, N, Panasenko, G. Homogenisation: averaging processes in periodic media. Dordrecht: Springer, 1989. · Zbl 0692.73012
[9] Bensoussan, A, Lions, JL, Papanicolau, G. Asymptotic analysis for periodic structures. New York: Elsevier Science, 1978.
[10] Cioranescu, D, Donato, P. An introduction to homogenization. Oxford: Oxford University Press, 1999. · Zbl 0939.35001
[11] Sanchez-Palencia, E. Non-homogeneous media and vibration theory. Berlin: Springer, 1980. · Zbl 0432.70002
[12] Auriault, JL, Boutin, C, Geindreau, C (eds.) Homogenization of coupled phenomena in heterogenous media. London: ISTE, 2009.
[13] Milton, GW. The theory of composites. Cambridge: Cambridge University Press, 2002. · Zbl 0993.74002
[14] Bader, TK, Hofstetter, K, Hellmich, C, et al. The poroelastic role of water in cell walls of the hierarchical composite ‘softwood’. Acta Mechanica 2011; 217(1-2): 75-100. · Zbl 1295.74009
[15] Nikolov, S, Raabe, D. Hierarchical modeling of the elastic properties of bone at submicron scales: the role of extrafibrillar mineralization. Biophysical J 2008; 94(11): 4220-4232.
[16] Hamed, E, Lee, Y, Jasiuk, I. Multiscale modeling of elastic properties of cortical bone. Acta Mechanica 2010; 213(1-2): 131-154. · Zbl 1320.74078
[17] Mei, CC, Auriault, JL. Mechanics of heterogeneous porous media with several spatial scales. Proc R Soc A 1989; 426(1871): 391-423. · Zbl 0695.76047
[18] Allaire, G, Briane, M. Multiscale convergence and reiterated homogenisation. Proc R Soc Edinburgh A 1996; 126(2): 297-342. · Zbl 0866.35017
[19] Crolet, J, Aoubiza, B, Meunier, A. Compact bone: numerical simulation of mechanical characteristics. J Biomechanics 1993; 26(6): 677-687.
[20] Telega, JJ, Galka, A, Tokarzewski, S. Application of the reiterated homogenization to determination of effective noduli of a compact bone. J Theor Appl Mech 1999; 37: 687-706. · Zbl 0963.74037
[21] Lukkassen, D, Milton, GW. On hierarchical structures and reiterated homogenization. In Cwikel, M, Englis, M, Kufner, A, et al. (eds.) Function spaces, interpolation theory and related topics. New York: De Gruyter, 355-368. · Zbl 1021.35011
[22] Rohan, E, Naili, S, Cimrman, R, et al. Multiscale modeling of a fluid saturated medium with double porosity: relevance to the compact bone. J Mech Physics Solids 2012; 60(5): 857-881.
[23] Dimitrienko, Y, Dimitrienko, I, Sborschikov, S. Multiscale hierarchical modeling of fiber reinforced composites by asymptotic homogenization method. Appl Math Sci 2015; 9: 7211-7220.
[24] Tsalis, D, Charalambakis, N, Bonnay, K, et al. Effective properties of multiphase composites made of elastic materials with hierarchical structure. Math Mech Solids 2015; 22(4): 751-770. · Zbl 1371.74237
[25] Nascimento, ES, Cruz, ME, Bravo-Castillero, J. Calculation of the effective thermal conductivity of multiscale ordered arrays based on reiterated homogenization theory and analytical formulae. Int J Eng Sci 2017; 119: 205-216.
[26] Penta, R, Raum, K, Grimal, Q, et al. Can a continuous mineral foam explain the stiffening of aged bone tissue? A micromechanical approach to mineral fusion in musculoskeletal tissues. Bioinspiration Biomim 2016; 11(3): 035004.
[27] Trucu, D, Chaplain, M, Marciniak-Czochra, A. Three-scale convergence for processes in heterogeneous media. Appl Anal 2012; 91(7): 1351-1373. · Zbl 1252.35038
[28] Zohdi, TI, Oden, J, Rodin, GJ. Hierarchical modeling of heterogeneous bodies. Comput Meth Appl Mech Eng 1996; 138(1-4): 273-298. · Zbl 0921.73080
[29] Ramírez-Torres, A, Penta, R, Rodríguez-Ramos, R, et al. Homogenized out-of-plane shear response of three-scale fiber-reinforced composites. Comput Vis Sci 2018. Epub head of print June 29, 2018. DOI: 10.1007/s00791-018-0301-6.
[30] Ramírez-Torres, A, Penta, R, Rodríguez-Ramos, R, et al. Three scales asymptotic homogenization and its application to layered hierarchical hard tissues. Int J Solid Struct 2018; 130-131: 190-198.
[31] Tiburtius, S, Schrof, S, Molnár, F, et al. On the elastic properties of mineralized turkey leg tendon tissue: multiscale model and experiment. Biomech Model Mechanobiol 2014; 13(5): 1003-1023.
[32] Ramírez-Torres, A, Stefano, SD, Grillo, A, et al. An asymptotic homogenization approach to the microstructural evolution of heterogeneous media. Int J Non-Linear Mech 2018; 106: 245-257.
[33] Muskhelishvili, NI. Some basic problems of the mathematical theory of elasticity. Dordrecht: Springer, 1977.
[34] Pobedrya, BE. Mechanics of composite materials. Moscow: Moscow State University Press, 1984. (In Russian.) · Zbl 0555.73069
[35] Rodríguez-Ramos, R, Sabina, FJ, Guinovart-Díaz, R, et al. Closed-form expressions for the effective coefficients of a fiber-reinforced composite with transversely isotropic constituents: I. Elastic and square symmetry. Mech Mat 2001; 33(4): 223-235.
[36] Sabina, FJ, Rodríguez-Ramos, R, Bravo-Castillero, J, et al. Closed-form expressions for the effective coefficients of a fibre-reinforced composite with transversely isotropic constituents: II. Piezoelectric and hexagonal symmetry. J Mech Physics Solid 2001; 49(7): 1463-1479. · Zbl 1017.74056
[37] Bravo-Castillero, J, Guinovart-Díaz, R, Sabina, FJ, et al. Closed-form expressions for the effective coefficients of a fiber-reinforced composite with transversely isotropic constituents: II. Piezoelectric and square symmetry. Mech Mat 2001; 33(4): 237-248.
[38] Weiner, S, Wagner, HD. The material bone: structure-mechanical function relations. Ann Rev Mat Sci 1998; 28(1): 271-298.
[39] Reuss, A. Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitătsbedingung für Einkristalle . Zeitschrift für Angewandte Mathematik und Mechanik 1929; 9(1): 49-58. · JFM 55.1110.02
[40] Penta, R, Gerisch, A. Investigation of the potential of asymptotic homogenization for elastic composites via a three-dimensional computational study. Comput Vis Sci 2015; 17(4): 185-201. · Zbl 1388.74086
[41] Penta, R, Gerisch, A. The asymptotic homogenization elasticity tensor properties for composites with material discontinuities. Continuum Mech Therm 2017; 29(1): 187-206. · Zbl 1365.74146
[42] Alexander, B, Daulton, TL, Genin, GM, et al. The nanometre-scale physiology of bone: steric modelling and scanning transmission electron microscopy of collagen-mineral structure. J R Soc Interface 2012; 9(73): 1774-1786.
[43] Raum, K, Cleveland, RO, Peyrin, F, et al. Derivation of elastic stiffness from site-matched mineral density and acoustic impedance maps. Phys Med Biol 2006; 51(3): 747-758.
[44] Hollister, SJ, Lin, CY. Computational design of tissue engineering scaffolds. Comput Meth Appl Mech Eng 2007; 196(31-32): 2991-2998. · Zbl 1125.74031
[45] Wu, D, Isaksson, P, Ferguson, SJ, et al. Young’s modulus of trabecular bone at the tissue level: a review. Acta Biomaterialia 2018; 78: 1-12.
[46] Mulder, L, Koolstra, JH, den Toonder, JM, et al. Relationship between tissue stiffness and degree of mineralization of developing trabecular bone. J Biomed Mat Res A 2008; 84A(2): 508-515.
[47] Hong, J, Cha, H, Park, Y, et al. Elastic moduli and Poisson’s ratios of microscopic human femoral trabeculae. In Jarm, T, Kramar, P, Anze, Z (eds.) 11th Mediterranean Conference on Medical and Biomedical Engineering and Computing 2007, volume 16. Berlin: Springer, 2007, 274-277.
[48] García-Rodríguez, J, Martínez-Reina, J. Elastic properties of woven bone: effect of mineral content and collagen fibrils orientation. Biomech Model Mechanobiol 2016; 16(1): 159-172.
[49] Pruchnicki, E. Hyperelastic homogenized law for reinforced elastomer at finite strain with edge effects. Acta Mechanica 1998; 129(3-4): 139-162. · Zbl 0916.73028
[50] Collis, J, Brown, DL, Hubbard, ME, et al. Effective equations governing an active poroelastic medium. Proc R Soc A 2017; 473(2198): 20160755. · Zbl 1404.74040
[51] Sanz-Herrera, J, García-Aznar, J, Doblaré, M. Micro-macro numerical modelling of bone regeneration in tissue engineering. Comput Meth Appl Mech Eng 2008; 197(33-40): 3092-3107. · Zbl 1194.74204
[52] Peter, MA. Coupled reaction-diffusion processes inducing an evolution of the microstructure: analysis and homogenization. Nonlinear Anal 2009; 70(2): 806-821. · Zbl 1151.35308
[53] O’Dea, RD, Nelson, MR, Haj, AJE, et al. A multiscale analysis of nutrient transport and biological tissue growth in vitro. Math Med Biol 2014; 32(3): 345-366. · Zbl 1325.92061
[54] Collis, J, Hubbard, M, O’Dea, R. Computational modelling of multiscale, multiphase fluid mixtures with application to tumour growth. Comput Meth Appl Mech Eng 2016; 309: 554-578. · Zbl 1439.76003
[55] Holmes, MH. Introduction to perturbation methods. New York: Springer, 2013. · Zbl 1270.34002
[56] Penta, R, Ambrosi, D, Shipley, RJ. Effective governing equations for poroelastic growing media. Q J Mech Appl Math 2014; 67(1): 69-91. · Zbl 1346.74159
[57] Penta, R, Ambrosi, D, Quarteroni, A. Multiscale homogenization for fluid and drug transport in vascularized malignant tissues. Math Model Meth Appl Sci 2015; 25(1): 79-108. · Zbl 1307.92062
[58] Bruna, M, Chapman, SJ. Diffusion in spatially varying porous media. SIAM J Appl Math 2015; 75(4): 1648-1674. · Zbl 1320.35038
[59] Dalwadi, MP, Griffiths, IM, Bruna, M. Understanding how porosity gradients can make a better filter using homogenization theory. Proc R Soc A 2015; 471(2182): 20150464. · Zbl 1371.76133
[60] Fish, J. Multiscale analysis of composite materials and structures. Compos Sci Tech 2000; 60(12-13): 2547-2556.
[61] Ghosh, S, Lee, K, Raghavan, P. A multi-level computational model for multi-scale damage analysis in composite and porous materials. Int J Solid Struct 2001; 38(14): 2335-2385. · Zbl 1015.74058
[62] Grigolyuk, EI, Fil’shtinskii, LA. Perforated plates and shells. Moscow: Nauka, 1970 (in Russian).
[63] Sokolnikoff, IS. Mathematical theory of elasticity. New York: McGraw-Hill, 1956. · Zbl 0070.41104
[64] Kantorovich, LV, Krylov, VI. Approximate methods of higher analysis. Reeuwijk: Interscience Publishers, 1964. · Zbl 0083.35301
[65] Ya, Natanzon V . On the stresses in a plate in tension, weakened by identical holes arranged in a staggered array, Matem. sb. 42(5),1935.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.