×

Efficient multiscale methods for the semiclassical Schrödinger equation with time-dependent potentials. (English) Zbl 1506.81008

Summary: The semiclassical Schrödinger equation with time-dependent potentials is an important model to study electron dynamics under external controls in the mean-field picture. In this paper, we propose two multiscale finite element methods to solve this problem. In the offline stage, for the first approach, the localized multiscale basis functions are constructed using sparse compression of the Hamiltonian operator at the initial time; for the latter, basis functions are further enriched using a greedy algorithm for the sparse compression of the Hamiltonian operator at later times. In the online stage, the Schrödinger equation is approximated by these localized multiscale basis functions in space and is solved by the Crank-Nicolson method in time. These multiscale basis functions have compact supports in space, leading to the sparsity of the stiffness matrix, and thus the computational complexity of these two methods is comparable to that of the standard finite element method. The spatial mesh size in the multiscale finite element methods is \(\mathcal{O}(\varepsilon)\), while the mesh size in the standard finite element method is \(o(\varepsilon)\), where \(\varepsilon\) is the semiclassical parameter. Through a number of numerical examples in 1D and 2D, for approximately the same number of basis, we show that the approximation error of the multiscale finite element method is at least two orders of magnitude smaller than that of the standard finite element method, and the enrichment further reduces the error by another one order of magnitude.

MSC:

81-08 Computational methods for problems pertaining to quantum theory
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
35Q41 Time-dependent Schrödinger equations and Dirac equations
65K10 Numerical optimization and variational techniques
81V10 Electromagnetic interaction; quantum electrodynamics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Žutić, I.; Fabian, J.; Das Sarma, S., Spintronics: Fundamentals and applications, Rev. Modern Phys., 76, 323-410 (2004)
[2] Louwen, A.; van Sark, W.; Schropp, R.; Faaij, A., A cost roadmap for silicon heterojunction solar cells, Sol. Energy Mater. Sol. Cells, 147, 295-314 (2016)
[3] Quach, J. Q.; Su, C.-H.; Martin, A. M.; Greentree, A. D.; Hollenberg, L. C.L., Reconfigurable quantum metamaterials, Opt. Express, 19, 11018-11033 (2011)
[4] Jin, S.; Markowich, P.; Sparber, C., Mathematical and computational methods for semiclassical Schrödinger equation, Acta Numer., 20, 121-209 (2011) · Zbl 1233.65071
[5] E. Cancès, Mathematical models and numerical methods for electronic structure calculation, in: ICM Proceedings, 2014. · Zbl 1373.81196
[6] Bao, W.; Jin, S.; Markowich, P. A., On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime, J. Comput. Phys., 175, 487-524 (2002) · Zbl 1006.65112
[7] Huang, Z.; Jin, S.; Markowich, P.; Sparber, C., A Bloch decomposition-based split-step pseudospectral method for quantum dynamics with periodic potentials, SIAM J. Sci. Comput., 29, 515-538 (2007) · Zbl 1136.65093
[8] Huang, Z.; Jin, S.; Markowich, P.; Sparber, C., Numerical simulation of the nonlinear Schrödinger equation with multidimensional periodic potentials, Multiscale Model. Simul., 7, 539-564 (2008) · Zbl 1173.65341
[9] Degond, P.; Gallego, S.; Méhats, F., An asymptotic preserving scheme for the Schrödinger equation in the semiclassical limit, C. R. Math., 345, 9, 531-536 (2007) · Zbl 1128.65064
[10] Jin, S.; Wu, H.; Yang, X., Gaussian beam methods for the Schrödinger equation in the semi-classical regime: Lagrangian and Eulerian formulations, Commun. Math. Sci., 6, 995-1020 (2008) · Zbl 1161.81369
[11] Jin, S.; Wu, H.; Yang, X.; Huang, Z., Bloch decomposition-based Gaussian beam method for the Schrödinger equation with periodic potentials, J. Comput. Phys., 229, 4869-4883 (2010) · Zbl 1346.81044
[12] Qian, J.; Ying, L., Fast Gaussian wavepacket transforms and Gaussian beams for the Schrödinger equation, J. Comput. Phys., 229, 7848-7873 (2010) · Zbl 1197.65156
[13] Yin, D.; Zheng, C., Gaussian beam formulations and interface conditions for the one-dimensional linear Schrödinger equation, Wave Motion, 48, 310-324 (2011) · Zbl 1283.81063
[14] Delgadillo, R.; Lu, J.; Yang, X., Gauge-invariant frozen Gaussian approximation method for the Schrödinger equation with periodic potentials, SIAM J. Sci. Comput., 38, A2440-A2463 (2016) · Zbl 1346.81043
[15] Jin, S.; Qi, P.; Zhang, Z., An Eulerian surface hopping method for the Schrödinger equation with conical crossings, SIAM Multiscale Model. Simul., 9, 258-281 (2011) · Zbl 1219.35202
[16] Chen, J.; Ma, D.; Zhang, Z., A multiscale finite element method for the Schrödinger equation with multiscale potentials, SIAM J. Sci. Comput., 41, 5, B1115-B1136 (2019) · Zbl 1428.35111
[17] Hou, T. Y.; Wu, X.; Cai, Z., Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients, Math. Comp., 68, 227, 913-943 (1999) · Zbl 0922.65071
[18] Efendiev, Y.; Hou, T. Y., Multiscale Finite Element Methods. Theory and Applications (2009), Springer-Verlag: Springer-Verlag New York · Zbl 1163.65080
[19] Hughes, T., Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods, Comput. Methods Appl. Mech. Engrg., 127, 1-4, 387-401 (1995) · Zbl 0866.76044
[20] Hughes, T.; Feijoo, G.; Mazzei, L.; Quincy, J., The variational multiscale method-a paradigm for computational mechanics, Comput. Methods Appl. Mech. Engrg., 166, 1-2, 3-24 (1998) · Zbl 1017.65525
[21] Malqvist, A.; Peterseim, D., Localization of elliptic multiscale problems, Math. Comp., 83, 290, 2583-2603 (2014) · Zbl 1301.65123
[22] Owhadi, H., Bayesian numerical homogenization, SIAM Multiscale Model. Simul., 13, 3, 812-828 (2015) · Zbl 1322.35002
[23] Owhadi, H., Multigrid with rough coefficients and Multiresolution operator decomposition from Hierarchical Information Games, SIAM Rev., 59, 1, 99-149 (2017) · Zbl 1358.65071
[24] Hou, T. Y.; Zhang, P., Sparse operator compression of higher-order elliptic operators with rough coefficients, Res. Math. Sci., 4, 1, 24 (2017) · Zbl 1412.65215
[25] Hou, T.; Ma, D.; Zhang, Z., A model reduction method for multiscale elliptic PDEs with random coefficients using an optimization approach, Multiscale Model. Simul., 17, 2, 826-853 (2019) · Zbl 1420.35083
[26] Iserles, A.; Kropielnicka, K.; Singh, P., Magnus-Lanczos methods with simplified commutators for the Schrödinger equation with a time-dependent potential, SIAM J. Numer. Anal., 56, 3, 1547-1569 (2018) · Zbl 1395.65102
[27] Iserles, A.; Kropielnicka, K.; Singh, P., Compact schemes for laser-matter interaction in Schrödinger equation based on effective splittings of Magnus expansion, Comput. Phys. Comm., 234, 195-201 (2019) · Zbl 07682603
[28] Iserles, A.; Kropielnicka, K.; Singh, P., Solving Schrödinger equation in semiclassical regime with highly oscillatory time-dependent potentials, J. Comput. Phys., 376, 564-584 (2019) · Zbl 1416.81064
[29] Hou, T. Y.; Wu, X., A multiscale finite element method for elliptic problems in composite materials and porous media, J. Comput. Phys., 134, 169-189 (1997) · Zbl 0880.73065
[30] Babuska, I.; Lipton, R., Optimal local approximation spaces for generalized finite element methods with application to multiscale problems, Multiscale Model. Simul., 9, 1, 373-406 (2011) · Zbl 1229.65195
[31] Li, S.; Zhang, Z., Computing eigenvalues and eigenfunctions of Schrödinger equations using a model reduction approach, Commun. Comput. Phys., 24, 1073-1100 (2018) · Zbl 1475.65183
[32] J. Chen, D. Ma, Z. Zhang, Convergence of a multiscale finite element method for the Schrödinger equation with multiscale potentials, in preparation. · Zbl 1428.35111
[33] Efendiev, Y.; Galvis, J.; Hou, T., Generalized multiscale finite element methods (GMsFEM), J. Comput. Phys., 251, 116-135 (2013) · Zbl 1349.65617
[34] Chung, E.; Efendiev, Y.; Hou, T., Adaptive multiscale model reduction with generalized multiscale finite element methods, J. Comput. Phys., 320, 69-95 (2016) · Zbl 1349.76191
[35] Chung, E.; Efendiev, Y.; Leung, W., Generalized multiscale finite element methods for wave propagation in heterogeneous media, Multiscale Model. Simul., 12, 4, 1691-1721 (2014) · Zbl 1315.65085
[36] Thomée, V., (Galerkin Finite Element Methods for Parabolic Problems. Galerkin Finite Element Methods for Parabolic Problems, Springer Series in Computational Mathematics (2006), Springer-Verlag: Springer-Verlag Berlin, Heidelberg) · Zbl 1105.65102
[37] Chen, J.; Liu, J.-G.; Zhou, Z., On a Schrödinger-Landau-Lifshitz system: Variational structure and numerical methods, Multiscale Model. Simul., 14, 1463-1487 (2016) · Zbl 1352.65388
[38] Chen, J.; García-Cervera, C. J.; Yang, X., A mean-field model for spin dynamics in multilayered ferromagnetic media, Multiscale Model. Simul., 13, 551-570 (2015) · Zbl 1317.82058
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.