×

Chaos: From theory to applications for the 80th birthday of Otto E. Rössler. (English) Zbl 1465.37002


MSC:

37-03 History of dynamical systems and ergodic theory
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
01A60 History of mathematics in the 20th century

Biographic References:

Rösler, Otto E.
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Fantino, J., La notion de chaos en science et dans la bible, Rev. Sci. Relig., 74, 292-303 (2000) · doi:10.3406/rscir.2000.3538
[2] Ruelle, D.; Takens, F., On the nature of turbulence, Commun. Math. Phys., 20, 167-192 (1971) · Zbl 0223.76041 · doi:10.1007/BF01646553
[3] Landau, L. D., On the problem of turbulence, Dokl. Akad. Nauk SSSR, 44, 339-342 (1944)
[4] Hopf, E., A mathematical example displaying the features of turbulence, Commun. Pure Appl. Math., 1, 303-322 (1948) · Zbl 0031.32901 · doi:10.1002/cpa.3160010401
[5] May, R., Biological populations with nonoverlapping generations: Stable points, limit cycles, and chaos, Science, 186, 645-647 (1974) · doi:10.1126/science.186.4164.645
[6] Li, T.-Y.; Yorke, J. A., Period three implies chaos, Am. Math. Mon., 82, 985-992 (1975) · Zbl 0351.92021 · doi:10.1080/00029890.1975.11994008
[7] Feigenbaum, M. J., Quantitative universality for a class of nonlinear transformations, J. Stat. Phys., 19, 25-52 (1978) · Zbl 0509.58037 · doi:10.1007/BF01020332
[8] Rössler, O. E., Chaotic behavior in simple reaction system, Z. Naturforsch. A, 31, 259-264 (1976) · doi:10.1515/zna-1976-3-408
[9] Rössler, O. E., Different types of chaos in two simple differential equations, Z. Naturforsch. A, 31, 1664-1670 (1976) · doi:10.1515/zna-1976-1231
[10] Rössler, O. E., An equation for continuous chaos, Phys. Lett. A, 57, 397-398 (1976) · Zbl 1371.37062 · doi:10.1016/0375-9601(76)90101-8
[11] Rössler, O. E., Chemical turbulence: Chaos in a simple reaction-diffusion system, Z. Naturforsch. A, 31, 1168-1172 (1976) · doi:10.1515/zna-1976-1006
[12] Wegmann, K.; Rössler, O. E., Different kinds of chaotic oscillations in the Belousov-Zhabotinskii reaction, Z. Naturforsch. A, 33, 1179-1183 (1978) · doi:10.1515/zna-1978-1010
[13] Devaney, R. L., An Introduction to Chaotic Dynamical Systems (1989), Addison-Wesley · Zbl 0695.58002
[14] Thompson, J. M. T.; Stewart, H. B., Nonlinear Dynamics and Chaos (1986), Wiley · Zbl 0601.58001
[15] Ott, E., Chaos in Dynamical Systems (1993), Cambridge University Press: Cambridge University Press, New York · Zbl 0792.58014
[16] Alligood, K. T.; Sauer, T.; Yorke, J., Chaos. An Introduction to Dynamical Systems (1996), Springer · Zbl 0867.58043
[17] Wiggins, S., Introduction to Applied Nonlinear Dynamical Systems and Chaos (2003), Springer-Verlag: Springer-Verlag, New York · Zbl 1027.37002
[18] Bergé, P., Pomeau, Y., and Vidal, C., L’ordre Dans le Chaos—Vers Une Approche Déterministe de la Turbulence (Hermann, 1984) [Order Within Chaos: Towards a Deterministic Approach to Turbulence (Wiley-VCH, 1987)]. · Zbl 0669.58022
[19] Schuster, H. G., Deterministic Chaos: An Introduction (1984), Wiley-VCH · Zbl 0707.58004
[20] Grebogi, C.; Ott, E.; Pelikan, S.; Yorke, J. A., Strange attractors that are not chaotic, Physica D, 13, 261-268 (1984) · Zbl 0588.58036 · doi:10.1016/0167-2789(84)90282-3
[21] Lorenz, E. N., “Predictability: Does the flap of a butterfly’s wings in Brazil set off a Tornado in Texas?,” in 139th Meeting of the American Association for the Advancement of Science (National Science Foundation, 1972).
[22] Lorenz, E. N., Deterministic nonperiodic flow, J. Atmos. Sci., 20, 130-141 (1963) · Zbl 1417.37129 · doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
[23] Lorenz, E. N., The problem of deducing the climate from the governing equations, Tellus, 16, 1-11 (1964) · doi:10.3402/tellusa.v16i1.8893
[24] Gleick, J., Chaos: Making a New Science (1987), Viking Press: Viking Press, New York · Zbl 0706.58002
[25] Abraham, R. H.; Ueda, Y., The Chaos Avant-Garde: Memories of the Early Days of Chaos Theory (2000), World Scientific Publishing: World Scientific Publishing, Singapore · Zbl 0958.00013
[26] Letellier, C., Chaos in Nature, 2nd ed., Series on Nonlinear Science Series A Vol. 94 (World Scientific Publishing, 2019). · Zbl 1415.37002
[27] Letellier, C.; Abraham, R.; Shepelyansky, D. L.; össler, O. E. R.; Holmes, P.; Lozi, R.; Glass, L.; Pikovsky, A.; Olsen, L. F.; Tsuda, I.; Grebogi, C.; Parlitz, U.; Gilmore, R.; Pecora, L. M.; Carroll, T. L., Chaos, 31, 053110 (2021) · Zbl 1462.37002 · doi:10.1063/5.0047851
[28] Chirikov, B. V., Resonance processes in magnetic traps, Atom. Energiya, 6, 630 (1959) · doi:10.1007/BF01483352
[29] Sinai, Y. G., On the foundations of the ergodic hypothesis for a dynamical system of statistical mechanics, Dokl. Akad. Nauk SSSR, 153, 1261-1264 (1963)
[30] Smale, S., Differentiable dynamical systems. Diffeormorphisms, Bull. Am. Math. Soc., 73, 747-817 (1967) · Zbl 0202.55202 · doi:10.1090/S0002-9904-1967-11798-1
[31] Glass, L., Chaos and heart rate variability, J. Cardiovasc. Electrophysiol., 10, 1358-1360 (1999) · doi:10.1111/j.1540-8167.1999.tb00191.x
[32] Eckmann, J.-P.; Ruelle, D., Ergodic theory of chaos and strange attractors, Rev. Mod. Phys., 57, 617-656 (1985) · Zbl 0989.37516 · doi:10.1103/RevModPhys.57.617
[33] Kantz, H.; Schreiber, T., Nonlinear Time Series Analysis (2010), Cambridge University Press
[34] Leonov, G. A.; Kuznetsov, N. V., Time-varying linearization and the Perron effects, Int. J. Bifurcation Chaos, 17, 1079-1107 (2007) · Zbl 1142.34033 · doi:10.1142/S0218127407017732
[35] Eckmann, J.-P.; Ruelle, D., Fundamental limitations for estimating dimensions and Lyapunov exponents in dynamical systems, Physica D, 56, 185-187 (1992) · Zbl 0759.58030 · doi:10.1016/0167-2789(92)90023-G
[36] Hunt, B. R.; Ott, E., Defining chaos, Chaos, 25, 097618 (2015) · Zbl 1374.37002 · doi:10.1063/1.4922973
[37] Glass, L.; Mackey, M., Mackey-Glass equation, Scholarpedia, 5, 6908 (2010) · doi:10.4249/scholarpedia.6908
[38] Aguirre, L. A.; Letellier, C., Modeling nonlinear dynamics and chaos: A review, Math. Probl. Eng., 2009, 238960 (2009) · Zbl 1180.37003 · doi:10.1155/2009/238960
[39] Parlitz, U.; Lauterborn, W., Superstructure in the bifurcation set of the Duffing equation \(\ddot{x} + d \dot{x} + x + x^3 = f \cos(\omega t)\), Phys. Lett. A, 107, 351-355 (1985) · doi:10.1016/0375-9601(85)90687-5
[40] Holmes, P. J.; Rand, D. A., Bifurcations of the forced van der Pol oscillator, Q. Appl. Math., 35, 495-509 (1978) · Zbl 0375.34031 · doi:10.1090/qam/492551
[41] Shaw, R., Strange attractor, chaotic behavior and information flow, Z. Naturforsch. A, 36, 80-112 (1981) · Zbl 0599.58033 · doi:10.1515/zna-1981-0115
[42] Parlitz, U.; Lauterborn, W., Period-doubling cascades and devil’s staircases of the driven van der Pol oscillator, Phys. Rev. A, 36, 1428-1434 (1987) · doi:10.1103/PhysRevA.36.1428
[43] Ueda, Y., The Road to Chaos, Science Frontier Express Series, edited by R. Abraham and H. B. Steward (Aerial Press, Santa Cruz, CA, 1993).
[44] Matorin, I. I.; Pikovskiĭ, A. S.; Khanin, Y. I., Multistability and autostochasticity in a laser with a delayed-response active medium subjected to periodic loss modulation, Sov. J. Quantum Electron., 14, 1401-1405 (1984) · doi:10.1070/QE1984v014n10ABEH006417
[45] Matsumoto, T.; Chua, L. O.; Komuro, M., The double scroll, IEEE Trans. Circuits Syst., CAS-32, 798-818 (1985) · Zbl 0578.94023 · doi:10.1109/TCS.1985.1085791
[46] Rössler, O. E., Continuous Chaos, 174-183 (1977), Springer-Verlag: Springer-Verlag, Berlin · Zbl 0372.58012
[47] Pikovski, A. S.; Rabinovich, M. I., A simple autogenerator with stochastic behavior, Dokl. Akad. Nauk SSSR, 239, 301-304 (1978)
[48] Jacobi, C. G., Lettre, C. R. Acad. Sci., 3, 59-61 (1836)
[49] Poincaré, H., Les Méthodes Nouvelles de la Mécanique Céleste iii (1899), Gauthier-Vilard: Gauthier-Vilard, Paris · JFM 30.0834.08
[50] Hénon, M.; Heiles, C., The applicability of the third integral of motion: Some numerical experiments, Astron. J., 69, 73-79 (1964) · doi:10.1086/109234
[51] May, R. M., Simple mathematical models with very complicated dynamics, Nature, 261, 459-467 (1976) · Zbl 1369.37088 · doi:10.1038/261459a0
[52] Hénon, M., A two-dimensional mapping with a strange attractor, Commun. Math. Phys., 50, 69-77 (1976) · Zbl 0576.58018 · doi:10.1007/BF01608556
[53] Lozi, R., Un attracteur étrange (?) du type attracteur de Hénon, J. Phys., 39, C5-9-C5-10 (1978) · doi:10.1051/jphyscol:1978505
[54] Chirikov, B. V., A universal instability of many-dimensional oscillator systems, Phys. Rep., 52, 263-379 (1979) · doi:10.1016/0370-1573(79)90023-1
[55] Mel’nikov, V. K., On the stability of a center for time-periodic perturbations, Tr. Mosk. Mat. Obs., 12, 3-52 (1963) · Zbl 0135.31001
[56] Bernussou, J., Hsu, L., and Mira, C., “Quelques exemples de solutions stochastiques bornées dans les récurrences autonomes du 2nd ordre,” in Transformations Ponctuelles et Leurs Applications (Colloques internationaux du CNRS, Toulouse, 1973), Vol. 229, pp. 195-220. · Zbl 0368.65061
[57] Malasoma, J.-M.; Malasoma, N., Bistability and hidden attractors in the paradigmatic Rössler’76 system, Chaos, 30, 123144 (2020) · Zbl 1465.34020 · doi:10.1063/5.0030023
[58] Malykh, S.; Bakhanova, Y.; Kazakov, A.; Pusuluri, K.; Shilnikov, A., Homoclinic chaos in the Rössler model, Chaos, 30, 113126 (2020) · Zbl 1451.34060 · doi:10.1063/5.0026188
[59] Stankevich, N.; Kazakov, A.; Gonchenko, S., Scenarios of hyperchaos occurrence in 4D Rössler system, Chaos, 30, 123129 (2020) · Zbl 1451.34056 · doi:10.1063/5.0027866
[60] Basios, V.; Antonopoulos, C. G.; Latifi, A., Labyrinth chaos: Revisiting the elegant, chaotic, and hyperchaotic walks, Chaos, 30, 113129 (2020) · Zbl 1460.37035 · doi:10.1063/5.0022253
[61] Mangiarotti, S.; Letellier, C., Topological characterization of toroidal chaos: A branched manifold for the Deng toroidal attractor, Chaos, 31, 013129 (2021) · Zbl 1458.37052 · doi:10.1063/5.0025924
[62] Olsen, L. F.; Lunding, A., Chaos in the peroxidase-oxidase oscillator, Chaos, 31, 013119 (2021) · Zbl 1458.92029 · doi:10.1063/5.0022251
[63] Gaspard, P., Stochastic approach to entropy production in chemical chaos, Chaos, 30, 113103 (2020) · Zbl 1455.80009 · doi:10.1063/5.0025350
[64] Gonzalez, C. E.; Lainscsek, C.; Sejnowski, T. J.; Letellier, C., Assessing observability of chaotic systems using delay differential analysis, Chaos, 30, 103113 (2020) · Zbl 1456.37090 · doi:10.1063/5.0015533
[65] Kumari, S.; Chugh, R., A novel four-step feedback procedure for rapid control of chaotic behavior of the logistic map and unstable traffic on the road, Chaos, 30, 123115 (2020) · Zbl 1458.37082 · doi:10.1063/5.0022212
[66] Tian, K.; Ren, H.-P.; Grebogi, C., Rössler-network with time delay: Univariate impulse pinning synchronization, Chaos, 30, 123101 (2020) · Zbl 1451.34043 · doi:10.1063/5.0017295
[67] Lin, L.; Wu, P.; Chen, Y.; He, B., Enhancing the settling time estimation of fixed-time stability and applying it to the predefined-time synchronization of delayed memristive neural networks with external unknown disturbance, Chaos, 30, 083110 (2020) · Zbl 1455.34075 · doi:10.1063/5.0010145
[68] Lu, T.; Wang, H.; Ji, Y., Wideband complex-enhanced bidirectional phase chaotic secure communication with time-delay signature concealment, Chaos, 30, 093138 (2020) · Zbl 1451.94031 · doi:10.1063/5.0012638
[69] dos Santos, V.; Borges, F. S.; Iarosz, K. C.; Caldas, I. L.; Szezech, J. D.; Viana, R. L.; Baptista, M. S.; Batista, A. M., Basin of attraction for chimera states in a network of Rössler oscillators, Chaos, 30, 083115 (2020) · Zbl 1445.34057 · doi:10.1063/5.0014013
[70] Kitsunai, S.; Cho, W.; Sano, C.; Saetia, S.; Qin, Z.; Koike, Y.; Frasca, M.; Yoshimura, N.; Minati, L., Generation of diverse insect-like gait patterns using networks of coupled Rössler systems, Chaos, 30, 123132 (2020) · doi:10.1063/5.0021694
[71] Yamaguti, Y.; Tsuda, I., Functional differentiations in evolutionary reservoir computing networks, Chaos, 31, 013137 (2021) · doi:10.1063/5.0019116
[72] Mangiarotti, S.; Fu, E.; Jouquet, P.; Tran, M. T.; Huc, M.; Bottinelli, N., Earthworm activity and its coupling to soil hydrology: A deterministic analysis, Chaos, 31, 013134 (2021) · doi:10.1063/5.0029969
[73] Baier, G.; Zhang, L.; Wang, Q.; Moeller, F., Extracting the transition network of epileptic seizure onset, Chaos, 31, 023143 (2021) · doi:10.1063/5.0026074
[74] Forest, É., Geometric integration for particle accelerators, J. Phys. A: Math. Gen., 39, 5321-5377 (2006) · Zbl 1092.81071 · doi:10.1088/0305-4470/39/19/S03
[75] King, G. P.; Stewart, I., Phase space reconstruction for symmetric dynamical systems, Physica D, 58, 216-228 (1992) · Zbl 1194.37133 · doi:10.1016/0167-2789(92)90110-9
[76] Letellier, C.; Dutertre, P.; Gouesbet, G., Characterization of the Lorenz system, taking into account the equivariance of the vector field, Phys. Rev. E, 49, 3492-3495 (1994) · doi:10.1103/PhysRevE.49.3492
[77] Letellier, C.; Gouesbet, G., Topological characterization of reconstructed attractors modding out symmetries, J. Phys. II, 6, 1615-1638 (1996)
[78] Letellier, C.; Dutertre, P.; Maheu, B., Unstable periodic orbits and templates of the Rössler system: Toward a systematic topological characterization, Chaos, 5, 271-282 (1995) · doi:10.1063/1.166076
[79] Gilmore, R., Topological analysis of chaotic dynamical systems, Rev. Mod. Phys., 70, 1455-1529 (1998) · Zbl 1205.37002 · doi:10.1103/RevModPhys.70.1455
[80] Letellier, C., Commun. Nonlinear Sci. Numer. Simul., 101, 105869 (2021) · Zbl 1480.37059 · doi:10.1016/j.cnsns.2021.105869
[81] Sprott, J. C., Some simple chaotic flows, Phys. Rev. E, 50, 647-650 (1994) · doi:10.1103/PhysRevE.50.R647
[82] J.-M. Malasoma, personal communication (2021).
[83] Gaspard, P.; Nicolis, G., What can we learn from homoclinic orbits in chaotic dynamics?, J. Stat. Phys., 31, 499-518 (1983) · Zbl 0587.58035 · doi:10.1007/BF01019496
[84] Castro, V.; Monti, M.; Pardo, W. B.; Walkenstein, J.; Rosa, E., Characterisation of the Rössler system in parameter space, Int. J. Bifurcation Chaos, 17, 965-973 (2007) · Zbl 1141.37316 · doi:10.1142/S0218127407017689
[85] Barrio, R.; Blesa, F.; Serrano, S., Qualitative analysis of the Rössler equations: Bifurcations of limit cycles and chaotic attractors, Physica D, 238, 1087-1100 (2009) · Zbl 1173.37049 · doi:10.1016/j.physd.2009.03.010
[86] Shilnikov, L. P., A case of the existence of a denumerable set of periodic motions, Sov. Math. Dokl., 6, 163-166 (1965) · Zbl 1173.37049 · doi:10.1016/j.physd.2009.03.010
[87] Letellier, C.; Gilmore, R., Covering dynamical systems: Two-fold covers, Phys. Rev. E, 63, 016206 (2001) · doi:10.1103/PhysRevE.63.016206
[88] Rössler, O. E., An equation for hyperchaos, Phys. Lett. A, 71, 155-157 (1979) · Zbl 0996.37502 · doi:10.1016/0375-9601(79)90150-6
[89] Charó, G. D.; Artana, G.; Sciamarella, D., Topology of dynamical reconstructions from Lagrangian data, Physica D, 405, 132371 (2020) · Zbl 1491.37068 · doi:10.1016/j.physd.2020.132371
[90] Thomas, R., Deterministic chaos seen in terms of feedback circuits: Analysis, synthesis: ‘Labyrinth chaos’, Int. J. Bifurcation Chaos, 09, 1889-1905 (1999) · Zbl 1089.37512 · doi:10.1142/S0218127499001383
[91] Sprott, J. C.; Chlouverakis, K., Labyrinth chaos, Int. J. Bifurcation Chaos, 17, 2097-2108 (2007) · Zbl 1141.37330 · doi:10.1142/S0218127407018245
[92] Curry, J.; Yorke, J. A., A transition from Hopf bifurcation to chaos: Computer experiments with maps on \(\mathbb{R}^2\), Lect. Notes Math., 668, 48-66 (1978) · Zbl 0407.58006 · doi:10.1007/BFb0101779
[93] Rössler, O. E.; Letellier, C., Chaos: The World of Nonperiodic Oscillations (2020), Springer Nature · Zbl 1439.34003
[94] Langford, W. F., “Numerical studies of torus bifurcations,” in Numerical Methods for Bifurcation Problems, International Series of Numerical Mathematics Vol. 70, edited by T. Küpper, H. D. Mittelmann, and H. Weber (Birkhäuser, Basel, 1984), pp. 285-295. · Zbl 0572.76052
[95] Deng, B., Constructing homoclinic orbits and chaotic attractors, Int. J. Bifurcation Chaos, 4, 823-841 (1994) · Zbl 0873.34036 · doi:10.1142/S0218127494000599
[96] Kuznetsov, A. P.; Kuznetsov, S. P.; Stankevich, N. V., A simple autonomous quasiperiodic self-oscillator, Commun. Nonlinear Sci. Numer. Simul., 15, 1676-1681 (2010) · doi:10.1016/j.cnsns.2009.06.027
[97] Li, D., A three-scroll chaotic attractor, Phys. Lett. A, 372, 387-393 (2008) · Zbl 1217.37030 · doi:10.1016/j.physleta.2007.07.045
[98] Tufillaro, N. B.; Abbott, T.; Reilly, J., An Experimental Approach to Nonlinear Dynamics and Chaos (1992), Addison-Wesley: Addison-Wesley, Redwood City, CA · Zbl 0762.58001
[99] Olsen, L. F.; Degn, H., Chaos in an enzyme reaction, Nature, 267, 177-178 (1977) · doi:10.1038/267177a0
[100] Schmitz, R. A.; Graziani, K. R.; Hudson, J. L., Experimental evidence of chaotic states in the Belousov-Zhabotinskii reaction, J. Chem. Phys., 67, 3040-3044 (1977) · doi:10.1063/1.435267
[101] Scott, S. K., Chemical Chaos (1993), Oxford University Press
[102] Chaos in Chemistry and Biochemistry, edited by R. J. Field and L. Györgyi (World Scientific, Singapore, 1993).
[103] Takens, F., Detecting strange attractors in turbulence, Lect. Notes Math., 898, 366-381 (1981) · Zbl 0513.58032 · doi:10.1007/BFb0091924
[104] Letellier, C.; Aguirre, L. A.; Maquet, J., Relation between observability and differential embeddings for nonlinear dynamics, Phys. Rev. E, 71, 066213 (2005) · doi:10.1103/PhysRevE.71.066213
[105] Hermann, R.; Krener, A., Nonlinear controllability and observability, IEEE Trans. Autom. Control, 22, 728-740 (1977) · Zbl 0396.93015 · doi:10.1109/TAC.1977.1101601
[106] Letellier, C.; Sendiña-Nadal, I.; Bianco-Martinez, E.; Baptista, M. S., A symbolic network-based nonlinear theory for dynamical systems observability, Sci. Rep., 8, 3785 (2018) · doi:10.1038/s41598-018-21967-w
[107] Haber, A.; Molnar, F.; Motter, A. E., State observation and sensor selection for nonlinear networks, IEEE Trans. Control Network Syst., 5, 694-708 (2018) · Zbl 1507.93040 · doi:10.1109/TCNS.2017.2728201
[108] Sendiña-Nadal, I. and Letellier, C., “Observability of dynamical networks from graphic and symbolic approaches,” in Complenet 2019, Springer Proceedings in Complexity Vol. X, edited by S. Cornelius, C. G. Martorell, J. Gómez-Gardeñes, and B. Gonçalves (Springer, Cham, 2019), pp. 3-15.
[109] Aguirre, L. A.; Letellier, C., Investigating observability properties from data in nonlinear dynamics, Phys. Rev. E, 83, 066209 (2011) · doi:10.1103/PhysRevE.83.066209
[110] Carroll, T. L., Testing dynamical system variables for reconstruction, Chaos, 28, 103117 (2018) · Zbl 1442.37092 · doi:10.1063/1.5049903
[111] Leitold, D.; Vathy-Fogarassy, A.; Abonyi, J., Design-oriented structural controllability and observability analysis of heat exchanger networks, Chem. Eng. Trans., 70, 595-600 (2018) · doi:10.3303/CET1870100
[112] Cornelius, S. P.; Kath, W. L.; Motter, A. E., Realistic control of network dynamics, Nat. Commun., 4, 1942 (2013) · doi:10.1038/ncomms2939
[113] Skardal, P. S.; Arenas, A., On controlling networks of limit-cycle oscillators, Chaos, 26, 094812 (2016) · Zbl 1382.34047 · doi:10.1063/1.4954273
[114] Haber, A.; Nugroho, S. A.; Torres, P.; Taha, A. F., Control node selection algorithm for nonlinear dynamic networks, IEEE Control Syst. Lett., 5, 1195-1200 (2021) · doi:10.1109/LCSYS.2020.3019591
[115] Liu, Y.-Y.; Slotine, J.-J.; Barabási, A.-L., Controllability of complex networks, Nature, 473, 167-173 (2011) · doi:10.1038/nature10011
[116] Liu, X.; Pan, L., Identifying driver nodes in the human signaling network using structural controllability analysis, IEEE/ACM Trans. Comput. Biol. Bioinf., 12, 467-472 (2015) · doi:10.1109/TCBB.2014.2360396
[117] Wang, S.; Kuang, J.; Li, J.; Luo, Y.; Lu, H.; Hu, G., Chaos-based secure communications in a large community, Phys. Rev. E, 66, 065202 (2002) · doi:10.1103/PhysRevE.66.065202
[118] Zaher, A. A.; Abu-Rezq, A., On the design of chaos-based secure communication systems, Commun. Nonlinear Sci. Numer. Simul., 16, 3721-3737 (2011) · Zbl 1225.94002 · doi:10.1016/j.cnsns.2010.12.032
[119] Larger, L., Complexity in electro-optic delay dynamics: Modelling, design and applications, Philos. Trans. R. Soc. A, 371, 20120464 (2013) · Zbl 1353.94007 · doi:10.1098/rsta.2012.0464
[120] Arenas, A.; Díaz-Guilera, A.; Kurths, J.; Moreno, Y.; Zhou, C., Synchronization in complex networks, Phys. Rep., 469, 93-153 (2008) · doi:10.1016/j.physrep.2008.09.002
[121] Gómez-Gardeñes, J.; Moreno, Y.; Arenas, A., Paths to synchronization on complex networks, Phys. Rev. Lett., 98, 034101 (2007) · doi:10.1103/PhysRevLett.98.034101
[122] Umberger, D. K.; Grebogi, C.; Ott, E.; Afeyan, B., Spatiotemporal dynamics in a dispersively coupled chain of nonlinear oscillators, Phys. Rev. A, 39, 4835-4842 (1989) · doi:10.1103/PhysRevA.39.4835
[123] Kuramoto, Y.; Battogtokh, D., Coexistence of coherence and incoherence in nonlocally coupled phase oscillators, Nonlinear Phenom. Complex Syst., 5, 380-385 (2002)
[124] Abrams, D. M.; Strogatz, S. H., Chimera states for coupled oscillators, Phys. Rev. Lett., 93, 174102 (2004) · doi:10.1103/PhysRevLett.93.174102
[125] Kemeth, F. P.; Haugland, S. W.; Schmidt, L.; Kevrekidis, I. G.; Krischer, K., A classification scheme for chimera states, Chaos, 26, 094815 (2016) · doi:10.1063/1.4959804
[126] Furusho, J.; Masubuchi, M., A theoretically motivated reduced order model for the control of dynamic biped locomotion, ASME J. Dyn. Syst. Meas. Control, 109, 155-163 (1987) · Zbl 0621.93044 · doi:10.1115/1.3143833
[127] Kajita, S.; Yamaura, T.; Kobayashi, A., Dynamic walking control of a biped robot along a potential energy conserving orbit, IEEE Trans. Rob. Autom., 8, 431-438 (1992) · doi:10.1109/70.149940
[128] Huang, Q.; Yokoi, K.; Kajita, S.; Kaneko, K.; Arai, H.; Koyachi, N.; Tanie, K., Planning walking patterns for a biped robot, IEEE Trans. Rob. Autom., 17, 280-289 (2001) · doi:10.1109/70.938385
[129] Rössler, O. E., “An artificial cognitive-plus-motivational system,” in Progress in Theoretical Biology, edited by R. Rosen (Academic Press, 1981), pp. 147-160.
[130] Glasser, M.; Coalson, T.; Robinson, E.; Hacker, C.; Harwell, J.; Yacoub, E.; Ugurbil, K.; Andersson, J.; Beckmann, C.; Jenkinson, M.; Smith, S.; Van Essen, D., A multi-modal parcellation of human cerebral cortex, Nature, 536, 171-178 (2016) · doi:10.1038/nature18933
[131] Ruelle, D., A measure associated with Axiom-\( \mathcal{a}\) attractors, Am. J. Math., 98, 619-654 (1976) · Zbl 0355.58010 · doi:10.2307/2373810
[132] Grassberger, P.; Procaccia, I., Characterization of strange attractors, Phys. Rev. Lett., 50, 346-349 (1983) · doi:10.1103/PhysRevLett.50.346
[133] Diks, C., Estimating invariants of noisy attractors, Phys. Rev. E, 53, R4263-R4266 (1996) · doi:10.1103/PhysRevE.53.R4263
[134] Ding, M.; Grebogi, C.; Ott, E.; Sauer, T.; Yorke, J. A., Estimating correlation dimension from a chaotic time series: When does plateau onset occur?, Physica D, 69, 404-424 (1993) · Zbl 0803.58038 · doi:10.1016/0167-2789(93)90103-8
[135] Wolf, A.; Swift, J. B.; Swinney, H. L.; Vastano, J. A., Determining Lyapunov exponents from a time series, Physica D, 16, 285-317 (1985) · Zbl 0585.58037 · doi:10.1016/0167-2789(85)90011-9
[136] Grond, F.; Diebner, H. H.; Sahle, S.; Mathias, A.; Fischer, S.; Rössler, O. E., A robust, locally interpretable algorithm for Lyapunov exponents, Chaos Soliton. Fract., 16, 841-852 (2003) · doi:10.1016/S0960-0779(02)00479-4
[137] Mindlin, G. B.; Hou, X.-J.; Solari, H. G.; Gilmore, R.; Tufillaro, N. B., Classification of strange attractors by integers, Phys. Rev. Lett., 64, 2350-2353 (1990) · Zbl 1050.37509 · doi:10.1103/PhysRevLett.64.2350
[138] Gilmore, R.; Lefranc, M., The Topology of Chaos (2003), Wiley
[139] Letellier, C., “Chaos in electronic circuits: Chua’s contribution (1980-2000),” in Chaos, CNN, Memristors and Beyond, edited by A. Adamatzky and G. Chen (World Scientific Publishing, 2013), pp. 211-235.
[140] Kaplan, D. T.; Glass, L., Direct test for determinism in a time series, Phys. Rev. Lett., 68, 427-430 (1992) · doi:10.1103/PhysRevLett.68.427
[141] Freitas, U. S.; Letellier, C.; Aguirre, L. A., Failure in distinguishing colored noise from chaos using the “noise titration” technique, Phys. Rev. E, 79, 035201 (2009) · doi:10.1103/PhysRevE.79.035201
[142] Mangiarotti, S.; Huc, M., Can the original equations of a dynamical system be retrieved from observational time series?, Chaos, 29, 023133 (2019) · Zbl 1409.37080 · doi:10.1063/1.5081448
[143] Aguirre, L. A.; Billings, S. A., Retrieving dynamical invariants from chaotic data using NARMAX models, Int. J. Bifurcation Chaos, 5, 449-474 (1995) · Zbl 0886.58100 · doi:10.1142/S0218127495000363
[144] Crutchfield, J. P.; McNamara, B. S., Equations of motion from a data series, Complex Syst., 1, 417-452 (1987) · Zbl 0675.58026
[145] Gouesbet, G.; Letellier, C., Global vector-field reconstruction by using a multivariate polynomial \(\text{L}_2\) approximation on nets, Phys. Rev. E, 49, 4955-4972 (1994) · doi:10.1103/PhysRevE.49.4955
[146] Lainscsek, C. S. M.; Letellier, C.; Schürrer, F., Ansatz library for global modeling with a structure selection, Phys. Rev. E, 64, 016206 (2001) · doi:10.1103/PhysRevE.64.016206
[147] Pathak, J.; Lu, Z.; Hunt, B. R.; Girvan, M.; Ott, E., Using machine learning to replicate chaotic attractors and calculate Lyapunov exponents from data, Chaos, 27, 121102 (2017) · Zbl 1390.37138 · doi:10.1063/1.5010300
[148] Rössler, O. E., Deductive biology—Some cautious steps, Bull. Math. Biol., 40, 45-58 (1978)
[149] Zaveri, H. P.; Pincus, S. M.; Goncharova, I. I.; Duckrow, R. B.; Spencer, D. D.; Spencer, S. S., Localization-related epilepsy exhibits significant connectivity away from the seizure-onset area, NeuroReport, 20, 891-895 (2009) · doi:10.1097/WNR.0b013e32832c78e0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.