×

Height estimates for \(H\)-surfaces in the warped product \({\mathbb {M}}\times _{f} {\mathbb {R}}\). (English) Zbl 1409.53055

Summary: In this article, we consider compact surfaces \(\Sigma \) having constant mean curvature \(H\) (\(H\)-surfaces) whose boundary \(\Gamma =\partial \Sigma \subset {\mathbb {M}}_0={\mathbb {M}}\times _f\{0\}\) is transversal to the slice \({\mathbb {M}}_0\) of the warped product \({\mathbb {M}}\times _f{\mathbb {R}}\), where \({\mathbb {M}}\) denotes a Hadamard surface. We obtain height estimate for a such surface \(\Sigma \) having positive constant mean curvature involving the area of a part of \(\Sigma \) above of \({\mathbb {M}}_0\) and the volume it bounds. Also we give general conditions for the existence of rotationally invariant topological spheres having positive constant mean curvature \(H\) in the warped product \({\mathbb {H}}\times _f{\mathbb {R}}\), where \({\mathbb {H}}\) denotes the hyperbolic disc. Finally, we present a non-trivial example of such spheres.

MSC:

53C42 Differential geometry of immersions (minimal, prescribed curvature, tight, etc.)
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Heinz, H.: On the nonexistence of a surface of constant mean curvature with finite area and prescribed rectifiable boundary. Arch. Ration. Mech. Anal. 35, 249-252 (1969) · Zbl 0184.32802 · doi:10.1007/BF00248159
[2] Aledo, J., Espinar, J., Gálvez, J.: Height estimates for surfaces with positive constant mean curvature in \[{\mathbb{M}}\times{\mathbb{R}}\] M×R. Illinois J. Math. 52(1), 203-211 (2008) · Zbl 1166.53039
[3] Leandro, C., Rosenberg, H.: A relation between height, area, and volume for compact constant mean curvature surfaces in \[M^2\times{\mathbb{R}}\] M2×R. Michigan Math. J. 61, 123-131 (2012) · Zbl 1260.53115 · doi:10.1307/mmj/1331222850
[4] López, R., Montiel, S.: Constant mean curvature surfaces with planar boundary. Duke Math. J. 3, 583-604 (1996) · Zbl 0877.53008 · doi:10.1215/S0012-7094-96-08522-1
[5] Salavessa, I.M.C.: Graphs with parallel mean curvature. Proc. Amer. Math. Soc. 107(2), 449-458 (1989) · Zbl 0681.53031 · doi:10.1090/S0002-9939-1989-0965247-X
[6] Salavessa, I.M.C.: Heinz mean curvature estimates in warped product spaces \[M \times_{e^\psi } N\] M×eψN. Ann. Global Anal. Geom. 53(2), 265-281 (2018) · Zbl 1390.53031 · doi:10.1007/s10455-017-9577-x
[7] Abresch, U., Rosenberg, H.: A Hopf differential for constant mean curvature surfaces in \[{\mathbb{S}}^2\times{\mathbb{R}}\] S2×R and \[{\mathbb{H}}^2\times{\mathbb{R}}\] H2×R. Acta Math. 193, 141-174 (2004) · Zbl 1078.53053 · doi:10.1007/BF02392562
[8] Sa Earp, R., Toubiana, E.: Screw motion surfaces in \[{\mathbb{H}}^2\times{\mathbb{R}}\] H2×R and \[{\mathbb{S}}^2\times{\mathbb{R}}\] S2×R. Illinois J. Math. 49(4), 1323-1362 (2005) · Zbl 1093.53068
[9] O’Neil, B.: A Semi-Riemannian Gemerty, 1st edn. Academic Press, Cambridge (1983)
[10] Sakai, T.: Riemannian Geometry. Translations in Mathematical Mono-graphs, vol. 149 (1992)
[11] Hoffman, D., Lira, J., Rosenberg, H.: Constant mean curvature surfaces in \[M^2\times{\mathbb{R}}\] M2×R. Trans. Amer. Math. Soc. 358-2, 491-507 (2006) · Zbl 1079.53088 · doi:10.1090/S0002-9947-05-04084-5
[12] Barbosa, L., do Carmo, M.: A proof of a general isoperimetric inequality for surfaces. Math. Z. 162, 245-261 (1978) · Zbl 0369.53054 · doi:10.1007/BF01186367
[13] Peñafiel, C.: Invariant surfaces in \[{\widetilde{PSL}}_2({\mathbb{R}},\tau )\] PSL 2(R,τ) and applications. Bull. Braz. Math. Soc. (N.S.) 43(4), 545-578 (2002) · Zbl 1261.53060 · doi:10.1007/s00574-012-0026-y
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.