×

Virtual elements and zero thickness interface-based approach for fracture analysis of heterogeneous materials. (English) Zbl 1440.74374

Summary: A novel procedure for analyzing fracture processes in quasi-brittle materials and consisting in combining the discrete crack approach by means of interface elements with the Virtual Element Method is proposed and developed in this work. In particular, the proposed procedure is used in the simulation of non-linear mechanical response and cracking of cement-based composites at the mesoscopic level of observation. Thereby three components are recognized: mortar, coarse aggregates and mortar-aggregate interfaces. In this regard VEM constitutes a powerful and efficient tool to represent the complex geometries of the inclusions in composite materials, such as coarse aggregates in concrete. Actually, patches with any number of edges (not necessarily convex), hanging nodes, flat angles, collapsing nodes, etc., can be easily handled in the VEM framework while retaining the same approximation properties of FEM. On the other hand, classical zero-thickness interface elements (IEs) are employed for modeling stress-crack opening processes. A series of numerical results, not only at the mesoscopic but also at the macroscopic level of observation, are presented to demonstrate the soundness and capabilities of the proposed approach based on combinations of VEM and IEs.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
74R10 Brittle fracture

Software:

PolyMesher
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Guo, L.; Guo, X.; Hong, J.; Wang, Y., Constitutive relation of concrete containing meso-structural characteristics, Results Phys., 7, 1155-1160 (2017)
[2] Abdullah, T.; Liu, L., Meso-scale phase-field modeling of microstructural evolution in solid oxide fuel cells, J. Electrochem. Soc., 163, 7, F618-F625 (2016)
[3] Fang, Y.-G.; Li, B., Multiscale problems and analysis of soil mechanics, Mech. Mater., 103, 55-67 (2016)
[4] Romanowicz, M., A mesoscale study of failure mechanisms in angle-ply laminates under tensile loading, Composites B, 90, 45-57 (2016)
[5] Caballero, A.; Carol, I.; López, C., 3D meso-mechanical analysis of concrete specimens under biaxial loading, Fatigue Fract. Eng. Mater. Struct., 30, 9, 877-886 (2007)
[6] Idiart, A. E.; López, C. M.; Carol, I., Modeling of drying shrinkage of concrete specimens at the meso-level, Mater. Struct., 44, 2, 415-435 (2011)
[7] Kim, S.-M.; Al-Rub, R. K.A., Meso-scale computational modeling of the plastic-damage response of cementitious composites, Cem. Concr. Res., 41, 3, 339-358 (2011)
[8] Rashid, Y., Ultimate strength analysis of prestressed concrete pressure vessels, Nucl. Eng. Des., 7, 4, 334-344 (1968), URL http://www.sciencedirect.com/science/article/pii/0029549368900666
[9] Benkemoun, N.; Poullain, P.; Al Khazraji, H.; Choinska, M.; Khelidj, A., Meso-scale investigation of failure in the tensile splitting test: Size effect and fracture energy analysis, Eng. Fract. Mech., 168, 242-259 (2016)
[10] Du, X.-L.; Jin, L.; Huang, J.-Q., Simulation of meso-fracture process of concrete using the extended finite element method, Chin. J. Comput. Mech., 29, 6, 940-947 (2012)
[11] Grassl, P.; Grégoire, D.; Solano, L. R.; Pijaudier-Cabot, G., Meso-scale modelling of the size effect on the fracture process zone of concrete, Int. J. Solids Struct., 49, 13, 1818-1827 (2012)
[12] Cusatis, G.; Pelessone, D.; Mencarelli, A., Lattice discrete particle model (LDPM) for failure behavior of concrete. I: Theory, Cem. Concr. Compos., 33, 9, 881-890 (2011)
[13] Nitka, M.; Tejchman, J., Modelling of concrete behaviour in uniaxial compression and tension with DEM, Granular Matter, 17, 1, 145-164 (2015)
[14] López, C. M.; Carol, I.; Aguado, A., Meso-structural study of concrete fracture using interface elements. i: numerical model and tensile behavior, Mater. Struct., 41, 3, 583-599 (2008)
[15] Idiart, A. E.; López, C. M.; Carol, I., Chemo-mechanical analysis of concrete cracking and degradation due to external sulfate attack: A meso-scale model, Cem. Concr. Compos., 33, 3, 411-423 (2011)
[16] Beirao da Veiga, L.; Manzini, G., A Virtual Element method with arbitrary regularity, IMA J. Numer. Anal., 34, 2, 759-781 (2014) · Zbl 1293.65146
[17] Gain, A. L.; Talischi, C.; Paulino, G. H., On the Vrtual Element method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes, Comput. Methods Appl. Mech. Engrg., 282, 132-160 (2014) · Zbl 1423.74095
[18] Klein, R., (Concrete and Abstract Voronoi Diagrams. Concrete and Abstract Voronoi Diagrams, Lecture Notes in Computer Science (1989), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0699.68005
[19] Lei, X., Contact friction analysis with a simple interface element, Comput. Methods Appl. Mech. Engrg., 190, 15-17, 1955-1965 (2001) · Zbl 1114.74487
[20] Wriggers, P., Computational Contact Mechanics (2006), Springer Science Business Media · Zbl 1104.74002
[21] Chen, J.; Crisfield, M.; Kinloch, A. J.; Busso, E. P.; Matthews, F.; Qiu, Y., Predicting progressive delamination of composite material specimens via interface elements, Mech. Compos. Mater. Struct., 6, 4, 301-317 (1999)
[22] Baky, H. A.; Ebead, U.; Neale, K., Nonlinear micromechanics-based bond-slip model for FRP/concrete interfaces, Eng. Struct., 39, 11-23 (2012)
[23] Xie, D.; Biggers, S. B., Progressive crack growth analysis using interface element based on the virtual crack closure technique, Finite Elem. Anal. Des., 42, 11, 977-984 (2006)
[24] Ciancio, D.; Carol, I.; Cuomo, M., A method for the calculation of inter-element stresses in 3D, Comput. Methods Appl. Mech. Engrg., 254, 222-237 (2013) · Zbl 1297.74115
[25] Costa Daguiar, S.; Modaressi-Farahmand-Razavi, A.; Dos Santos, J. A.; Lopez-Caballero, F., Elastoplastic constitutive modelling of soil structure interfaces under monotonic and cyclic loading, Comput. Geotech., 38, 4, 430-447 (2011)
[26] Stankowski, T.; Runesson, K.; Sture, S., Fracture and slip of interfaces in cementitious composites. I: Characteristics, II: Implementation, ASCE - J. Eng. Mech., 119, 2, 292-327 (1993)
[27] López, C. M.; Carol, I.; Aguado, A., Meso-structural study of concrete fracture using interface elements. ii: compression, biaxial and Brazilian test, Mater. Struct., 41, 3, 601-620 (2008)
[28] Lorefice, R.; Etse, G.; Carol, I., Viscoplastic approach for rate-dependent failure analysis of concrete joints and interfaces, Ijss, 45, 9, 2686-2705 (2008) · Zbl 1169.74352
[29] Caggiano, A.; Etse, G.; Martinelli, E., Zero-thickness interface model formulation for failure behavior of fiber-reinforced cementitious composites, Comput. Struct., 98, 23-32 (2012)
[30] Segura, J.; Carol, I., On zero-thickness interface elements for diffusion problems, Int. J. Numer. Anal. Methods Geomech., 28, 9, 947-962 (2004) · Zbl 1075.76580
[31] Liaudat, J.; Rodriguez, M.; Lopez, C.; Carol, I., Mechanics and Physics of Creep, Shrinkage, and Durability of Concrete: A Tribute to Zdenek P. Bažant: Proceedings of the Ninth International Conference on Creep, Shrinkage, and Durability Mechanics (CONCREEP-9), September 22-25, 2013 Cambridge, Massachusetts (2013), ASCE Publications
[32] Caggiano, A.; Etse, G., Coupled thermo-mechanical interface model for concrete failure analysis under high temperature, Comput. Methods Appl. Mech. Engrg., 289, 498-516 (2015) · Zbl 1423.74809
[33] Schellekens, J.; de Borst, R., A non-linear finite element approach for the analysis of mode-I free edge delamination in composites, Int. J. Solids Struct., 30, 9, 1239-1253 (1993), URL http://www.sciencedirect.com/science/article/pii/002076839390014X · Zbl 0775.73292
[34] Ciancio, D.; Carol, I.; Cuomo, M., On inter-element forces in the fem-displacement formulation, and implications for stress recovery, Internat. J. Numer. Methods Engrg., 66, 3, 502-528 (2006) · Zbl 1110.74847
[35] Ciancio, D.; Carol, I.; Castellazzi, G., Optimal penalty stiffness values of concurrent 2d elastic interface elements leading to accurate stress tractions, Internat. J. Numer. Methods Engrg., 98, 5, 344-370 (2014) · Zbl 1352.74030
[36] Alfano, G.; Crisfield, M. A., Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues, Internat. J. Numer. Methods Engrg., 50, 7, 1701-1736 (2001) · Zbl 1011.74066
[37] Yang, Z.; Proverbs, D., A comparative study of numerical solutions to non-linear discrete crack modelling of concrete beams involving sharp snap-back, Eng. Fract. Mech., 71, 1, 81-105 (2004), URL http://www.sciencedirect.com/science/article/pii/S001379440300047X
[38] Brezzi, F.; Beirao da Veiga, L.; Marini, L. D., Virtual elements for linear elasticity problems, SIAM J. Numer. Anal., 51, 2, 794-812 (2013) · Zbl 1268.74010
[39] Beirao da Veiga, L.; Lovadina, C.; Mora, D., A Virtual Element Method for elastic and inelastic problems on polytope meshes, Comput. Methods Appl. Mech. Engrg., 295, 327-346 (2015) · Zbl 1423.74120
[40] Artioli, E.; de Miranda, S.; Lovadina, C.; Patruno, L., A stress/displacement Virtual Element method for plane elasticity problems, Comput. Methods Appl. Mech. Engrg., 325, 155-174 (2017), URL http://www.sciencedirect.com/science/article/pii/S0045782517302475 · Zbl 1439.74040
[41] Chi, H.; Beirao da Veiga, L.; Paulino, G., Some basic formulations of the virtual element method (VEM) for finite deformations, Comput. Methods Appl. Mech. Engrg., 318, 148-192 (2017), URL http://www.sciencedirect.com/science/article/pii/S0045782516309094 · Zbl 1439.74397
[42] Gain, A. L.; Talischi, C.; Paulino, G. H., On the Virtual Element method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes, Comput. Methods Appl. Mech. Engrg., 282, 132-160 (2014), URL http://www.sciencedirect.com/science/article/pii/S0045782514001509 · Zbl 1423.74095
[43] Andersen, O.; Nilsen, H. M.; Raynaud, X., Virtual Element method for geomechanical simulations of reservoir models, Comput. Geosci., 1-17 (2017) · Zbl 1401.74208
[44] Wriggers, P.; Rust, W. T.; Reddy, B. D., A virtual element method for contact, Comput. Mech., 58, 6, 1039-1050 (2016) · Zbl 1398.74420
[45] Benedetto, M. F.; Berrone, S.; Scialò, S., A globally conforming method for solving flow in discrete fracture networks using the Virtual Element Method, Finite Elem. Anal. Des., 109, 23-36 (2016)
[46] Benedetto, M. F.; Berrone, S.; Borio, A.; Pieraccini, S.; Scialò, S., A hybrid mortar virtual element method for discrete fracture network simulations, J. Comput. Phys., 306, 148-166 (2016), URL http://www.sciencedirect.com/science/article/pii/S0021999115007743 · Zbl 1351.76048
[47] Beirao da Veiga, L.; Brezzi, F.; Cangiani, A.; Manzini, G.; Marini, L. D.; Russo, A., Basic principles of Virtual Element methods, Math. Models Methods Appl. Sci. (2013) · Zbl 1416.65433
[48] Artioli, E.; Beirao da Veiga, L.; Lovadina, C.; Sacco, E., Arbitrary order 2D virtual elements for polygonal meshes: part I, elastic problem, Comput. Mech., 60, 3, 355-377 (2017) · Zbl 1386.74132
[49] Artioli, E.; Beirao da Veiga, L.; Lovadina, C.; Sacco, E., Arbitrary order 2D virtual elements for polygonal meshes: part II, inelastic problem, Comput. Mech., 60, 4, 643-657 (2017) · Zbl 1386.74133
[50] Taylor, R.; Artioli, E., VEM for inelastic solids, (Oñate, E.; Peric, D.; de Souza Neto, E.; Chiumenti, M., Computational Methods in Applied Sciences. Computational Methods in Applied Sciences, Advances in Computational Plasticity, vol. 46 (2018), Springer: Springer Cham), URL https://link.springer.com/chapter/10.1007/978-3-319-60885-3_18 · Zbl 1493.74111
[51] Oliver, J.; Huespe, A.; Sanchez, P., A comparative study on finite elements for capturing strong discontinuities: E-FEM vs X-FEM, Comput. Methods Appl. Mech. Engrg., 195, 37, 4732-4752 (2006) · Zbl 1144.74043
[52] Wells, G.; Sluys, L., A new method for modelling cohesive cracks using finite elements, Internat. J. Numer. Methods Engrg., 50, 12, 2667-2682 (2001) · Zbl 1013.74074
[53] Talischi, C.; Paulino, G.; Pereira, A.; Menezes, I., PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab, Struct. Multidiscip. Optim., 45, 3 (2012) · Zbl 1274.74401
[54] Tvergaard, V., Effect of fibre debonding in a whisker-reinforced metal, Mater. Sci. Eng. A, 125, 2, 203-213 (1990), URL http://www.sciencedirect.com/science/article/pii/0921509390901708
[55] Park, K.; Paulino, G. H.; Roesler, J. R., A unified potential-based cohesive model of mixed-mode fracture, J. Mech. Phys. Solids, 57, 6, 891-908 (2009)
[56] Belytschko, T.; Liu, W. K.; Moran, B.; Elkhodary, K., Nonlinear Finite Elements for Continua and Structures (2014), Wiley
[57] E. Artioli, S. Marfia, E. Sacco, Virtual element technique for computational homogenization problems, in: Proceedings of AIMETA 2017 XXIII Conference The Italian Association of Theoretical and Applied Mechanics, 2018. · Zbl 1440.74338
[58] Artioli, E., Asymptotic homogenization of fibre-reinforced composites: a virtual element method approach, Meccanica (2018) · Zbl 1390.74174
[59] An, X.; Ma, G.; Cai, Y.; Zhu, H., A new way to treat material discontinuities in the numerical manifold method, Comput. Methods Appl. Mech. Engrg., 200, 47-48, 3296-3308 (2011), URL http://www.sciencedirect.com/science/article/pii/S0045782511002593 · Zbl 1230.74219
[60] Paggi, M.; Wriggers, P., Node-to-segment and node-to-surface interface finite elements for fracture mechanics, Comput. Methods Appl. Mech. Engrg., 300, 540-560 (2016), URL http://www.sciencedirect.com/science/article/pii/S0045782515003837 · Zbl 1425.74484
[61] Park, K.; Paulino, G. H., Computational implementation of the PPR potential-based cohesive model in ABAQUS: Educational perspective, Eng. Fract. Mech., 93, 239-262 (2012), URL http://www.sciencedirect.com/science/article/pii/S0013794412000690
[62] Parrinello, F.; Marannano, G.; Borino, G., A thermodynamically consistent cohesive-frictional interface model for mixed mode delamination, Eng. Fract. Mech., 153, 61-79 (2016), URL http://www.sciencedirect.com/science/article/pii/S0013794415006736
[63] Freddi, F.; Sacco, E.; Serpieri, R., An enriched damage-frictional cohesive-zone model incorporating stress multi-axiality, Meccanica (2017) · Zbl 1384.74005
[64] Nguyen, V. P., Discontinuous galerkin/extrinsic cohesive zone modeling: Implementation caveats and applications in computational fracture mechanics, Eng. Fract. Mech., 128, 37-68 (2014), URL http://www.sciencedirect.com/science/article/pii/S0013794414002136
[65] Labanda, N. A.; Giusti, S. M.; Luccioni, B. M., Meso-scale fracture simulation using an augmented lagrangian approach, Int. J. Damage Mech., 27, 1, 138-175 (2018), URL https://doi.org/10.1177/1056789516671092
[66] Garca, I.; Paggi, M.; Manti, V., Fiber-size effects on the onset of fibermatrix debonding under transverse tension: A comparison between cohesive zone and finite fracture mechanics models, Eng. Fract. Mech., 115, 96-110 (2014), URL http://www.sciencedirect.com/science/article/pii/S0013794413003408
[67] París, F.; Correa, E.; Mantič, V., Kinking of transversal interface cracks between fiber and matrix, J. Appl. Mech., 74, 4, 703-716 (2007)
[68] Wang, X.; Yang, Z.; Jivkov, A. P., Monte Carlo simulations of mesoscale fracture of concrete with random aggregates and pores: a size effect study, Constr. Build. Mater., 80, 262-272 (2015), URL http://www.sciencedirect.com/science/article/pii/S0950061815001154
[69] Carpinteri, A.; Brighenti, R., Fracture behaviour of plain and fiber-reinforced concrete with different water content under mixed mode loading, Mater. Des., 31, 4, 2032-2042 (2010), URL http://www.sciencedirect.com/science/article/pii/S0261306909005743. Design of Nanomaterials and Nanostructures
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.