×

Functional solutions for problems of heat and mass transfer. (English) Zbl 1412.34238

Summary: We prove the existence and, in certain cases, the uniqueness of functional solutions for boundary value problems of systems of P.D.E. in divergence form with constant boundary conditions. We are motivated by various problems of heat and mass transfer. After giving a suitable definition of functional solutions, we reformulate the boundary value problem as non-standard one-dimensional two point problem for a system of O.D.E coupled with a mixed problem for the laplacian. If \(\mathcal C_F\) and \(\mathcal C\) denote respectively the set of functional and classical solutions of the starting problem we settle, in simple cases, the question if \(\mathcal C_F=\mathcal C\).

MSC:

34L99 Ordinary differential operators
35J66 Nonlinear boundary value problems for nonlinear elliptic equations
80A20 Heat and mass transfer, heat flow (MSC2010)

References:

[1] Ambrosetti A, Prodi G (1993) A primer in non-linear analysis. Cambridge University Press, Cambridge · Zbl 0781.47046
[2] Bear J (1988) Dynamics of fluids in porous media. Dover, New York · Zbl 1191.76002
[3] Cafiero F (1947) Su un problema ai limiti relativo all’equazione \[y^{\prime }=f(x, y,\lambda )\] y′=f(x,y,λ). Giorn Mat Battaglini 77:145-163 · Zbl 0031.21301
[4] Cimatti G (2011) Remark on the existence, uniqueness and semi-explicit solvability of systems of autonomous partial differential equations in divergence form with constant boundary conditions. Proc R Soc Edinb 141:481-495 · Zbl 1248.35085 · doi:10.1017/S0308210509001826
[5] Cimatti G (2010) On the functional solutions of a system of partial differential equations relevant in mathematical physics. Riv Mat Univ Parma 14:423-439 · Zbl 1216.35022
[6] Cimatti G (2018) The formal analogy between the stationary axisymmetrical Einstein-Maxwell equations and the equations of electrical heating of conductors. Le Matematiche 73:89-98 · Zbl 1402.83020
[7] Cimatti G (2018) A nonlinear boundary value problem relevant in general relativity and in the theory of electrical heating of conductors. Boll Unione Mat Ital 11:191-204 · Zbl 1394.83002 · doi:10.1007/s40574-017-0121-5
[8] Cimatti G (2012) Functional solutions for a plane problem in magnetohydrodynamics. Rend Sem Mat Univ Padova 127:57-74 · Zbl 1286.76163 · doi:10.4171/RSMUP/127-4
[9] Cimatti G (2017) Existence and nonexistence of functional solutions for the equations of axially symmetric gravitational fields in general relativity. Riv Math Univ Parma 2:287-306 NS · Zbl 1391.83021
[10] Cimatti G (2012) Existence and uniqueness for a two-point problem with an application to the electrical heating in an electrolyte. Quart Appl Math 70:383-392 · Zbl 1246.34030 · doi:10.1090/S0033-569X-2012-01268-0
[11] Cimatti G (1989) Remark on the existence and uniqueness for the thermistor problem under mixed boundary conditions. Quart Appl Math 47:117-121 · Zbl 0694.35137 · doi:10.1090/qam/987900
[12] Hikosaka-Noboru H (1929) Untersuchung Ueber die Unitaet der Loesung der Differentialgleichung \[\frac{dy}{dx}=\xi f(x, y)\] dydx=ξf(x,y). Proc Phys Math Jpn 2:72-83 · JFM 55.0842.01
[13] Gilbarg D, Trudinger NS (1988) Elliptic partial differential equations of second order. Academic Press, New York · Zbl 0361.35003
[14] Miranda C (1970) Partial differential equations of elliptic type. Spinger, New York · Zbl 0198.14101 · doi:10.1007/978-3-662-35147-5
[15] Nield DA, Bejan A (1999) Convection in porous media. Springer, New York · Zbl 0924.76001 · doi:10.1007/978-1-4757-3033-3
[16] Protter MH, Weinberger HF (1967) Maximum principles in differential equations. Prentice-Hall, Englewood Cliffs · Zbl 0153.13602
[17] Sansone G (1941) Equazioni differenziali nel campo reale, Cap. VIII. Zanichelli editore, Bologna, pp 105-109 · JFM 67.0306.01
[18] Zawischa K (1930) Ueber die Differentialgleichung \[y = kf(x, y)\] y=kf(x,y) deren Loesungskurve durch zwei gegebene Punkte hindurchgehen soll. Monatsh Math Phys 37:103-124 · JFM 56.1048.02 · doi:10.1007/BF01696760
[19] Zwirner G (1946) Sull’equazione \[y^{\prime }=\lambda f(x, y)\] y′=λf(x,y). Rend Sem Mat Univ Padova 15:33-39 · Zbl 0061.17807
[20] Zwirner G (1946-1947) Alcuni teoremi sulle equazioni differenziali dipendenti da un parametro. Ann Univ Trieste 2:145-150 · Zbl 0039.31104
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.