×

A BEM approach to the evaluation of warping functions in the Saint Venant theory. (English) Zbl 1464.74311

Summary: The paper illustrates the numerical procedure, based upon a Boundary Element (BE) approach, developed to efficiently evaluate the warping functions in the Saint Venant theory of beam-like solids having both compact and thin-walled sections. Specifically, Chebyshev nodes are selected as collocation points of the BE formulation associated with the relevant pure Neumann problem and the entries of the resulting linear system of equations are evaluated analytically by invoking recursive formulas. Assuming a polynomial interpolation for the unknown function over each boundary element, we show that a reduction in the numerical accuracy of the solution is achieved if the polynomial degree exceeds a given order strictly related to the strategy adopted to discretize the boundary. For this reason, in order to automatically cope both with compact and thin-walled domains, a general criterion has been established for properly selecting the best combination of polynomial degree and edge discretization capable of reducing the numerical error of the procedure below a given tolerance.

MSC:

74S15 Boundary element methods applied to problems in solid mechanics
65N38 Boundary element methods for boundary value problems involving PDEs
74G50 Saint-Venant’s principle
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Love, A. E.H., A treatise on the mathematical theory of elasticity (1944), Dover Publications: Dover Publications New York · Zbl 0063.03651
[2] Sokolnikoff, I. S., Mathematical theory of elasticity (1946), McGraw-Hill: McGraw-Hill New York · Zbl 0070.41104
[3] Paradiso, M.; Marmo, F.; Rosati, L., Consistent derivation of a beam model from the Saint Venant’s solid model, Int J Solids Struct, 159, 90-110 (2019)
[4] Serpieri, R., On the equivalence of energetic and geometric shear factors based on Saint venant flexure, J Elast, 116, 115-160 (2014) · Zbl 1334.74051
[5] Lacarbonara, W.; Paolone, A., On solution strategies to Saint-Venant problem, J Comput Appl Math, 206, 473-497 (2007) · Zbl 1151.74355
[6] Barretta, R.; Barretta, A., Shear stresses in elastic beams: an intrinsic approach, Eur J Mech A Solids, 29, 400-409 (2010) · Zbl 1480.74175
[7] Di Paola, M.; Pirrotta, A.; Santoro, R., De Saint-Venant flexure-torsion problem handled by Line Element-less Method (LEM), Acta Mech, 217, 101-118 (2011) · Zbl 1398.74459
[8] Romano, G.; Barretta, A.; Barretta, R., On torsion and shear of Saint-Venant beams, Eur J Mech A Solids, 35, 47-60 (2012) · Zbl 1349.74225
[9] Barretta, R., On stress function in Saint-Venant beams, Meccanica, 48, 1811-1816 (2013) · Zbl 1293.74114
[10] Serpieri, R.; Rosati, L., A frame-Independent solution to Saint-Venant’s flexure problem, J Elast, 116, 161-187 (2014) · Zbl 1334.74052
[11] Kuchta, M.; Mardal, K. A.; Mortensen, M., On the singular Neumann problem in linear elasticity, Numerical Linear Algebra with Applications, 26 (2019) · Zbl 1524.65831
[12] Romano, G.; Rosati, L.; Ferro, G., Shear deformability of thin-walled beams with arbitrary cross sections, Int J Numer Methods Eng, 35, 283-306 (1992) · Zbl 0768.73032
[13] Gruttmann, F.; Wagner, W., Shear correction factors in Timoshenko’s beam theory for arbitrary shaped cross-sections, Comput Mech, 27, 199-207 (2001) · Zbl 1014.74039
[14] Petrolo, A. S.; Casciaro, R., 3D Beam element based on Saint Venànt’s rod theory, Comput Struct, 82, 2471-2481 (2004)
[15] Gruttmann, F.; Sauer, R.; Wagner, W., Shear stresses in prismatic beams with arbitrary cross-sections, Int J Numer Methods Eng, 45, 865-889 (1999) · Zbl 0931.74067
[16] Dutta Roy, T.; Wittek, A.; Miller, K., Biomechanical modelling of normal pressure hydrocephalus, J Biomech, 41, 2263-2271 (2008)
[17] Støverud, K. H.; Alnæs, M.; Langtangen, H. P.; Haughton, V.; Mardal, K. A., Poro-elastic modeling of Syringomyelia - a systematic study of the effects of pia mater, central canal, median fissure, white and gray matter on pressure wave propagation and fluid movement within the cervical spinal cord, Comput Methods Biomech Biomed Eng, 19, 6, 686-698 (2016)
[18] Tobie, G.; Čadek, O. P.; Sotin, C., Solid tidal friction above a liquid water reservoir as the origin of the South Pole hotspot on Enceladus, Icarus, 196, 642-652 (2008)
[19] Padture, N. P.; Gell, M.; Jordan, E. H., Thermal barrier coatings for gas-turbine engine applications, Science, 296, 280-284 (2002)
[20] Zhang, Y.; Gu, Y.; Chen, J.-T., Boundary element analysis of the thermal behaviour in thin-coated cutting tools, Eng Anal Boundary Elem, 34, 775-784 (2010) · Zbl 1244.74203
[21] Muskhelishvili, I. N., Some Basic Problems of the Mathematical Theory of Elasticity (1953), Noordhoff: Noordhoff Groningen · Zbl 0052.41402
[22] Hromadka II, T. V.; Guymon, G. L., Complex polynomial approximation of the Laplace equation, J Hydraul Eng, 110, 329-339 (1984) · Zbl 0524.65074
[23] Poler, A. C.; Bohannon, A. W.; Schowalter, S. J.; Hromadka II, T. V., Using the complex polynomial method with Mathematica to model problems involving the Laplace and Poisson equations, Numer Methods Partial Differ Equations, 25, 657-667 (2009) · Zbl 1168.65420
[24] Hromadka II, T. V.; Whitley, R. J., Advances in the Complex Variable Boundary Element Method (1998), Springer-Verlag: Springer-Verlag London · Zbl 1195.76299
[25] Whitley, R. J.; Hromadka II, T. V., Theoretical developments in the complex variable boundary element method, Eng Anal Boundary Elem, 30, 1020-1024 (2006) · Zbl 1195.76299
[26] Lee, J. W.; Hong, H. K.; Chen, J. T., Generalized complex variable boundary integral equation for stress fields and torsional rigidity in torsion problems, Eng Anal Bound Elem, 54, 86-96 (2015) · Zbl 1403.74183
[27] Di Paola, M.; Pirrotta, A.; Santoro, R., Line element-less method (LEM) for beam torsion solution (truly no-mesh method), Acta Mech, 195, 349-364 (2008) · Zbl 1136.74046
[28] Santoro, R., The line element-less method analysis of orthotropic beam for the De Saint Venant torsion problem, Int J Mech Sci, 27, 43-55 (2010)
[29] Bochev, P. B.; Lehoucq, R. B., On the finite element solution of the pure Neumann problem, SIAM Rev, 47, 50-66 (2002) · Zbl 1084.65111
[30] Steigemann, M.; Fulland, M., On the computation of the pure Neumann problem in 2-dimensional elasticity, Int J Fract, 146, 265-277 (2007) · Zbl 1264.74078
[31] Dai, X., Finite element approximation of the pure Neumann problem using the iterative penalty method, Appl Math Comput, 186, 1367-1373 (2007) · Zbl 1117.65153
[32] Friedman, Z.; Kosmatka, J. B., Torsion and flexure of a prismatic isotropic beam using the boundary element method, Comput Struct, 74, 479-494 (2000)
[33] Sapountzakis, E. J.; Mokos, V. G., Warping shear stresses in nonuniform torsion by BEM, Comput Mech, 30, 131-142 (2003) · Zbl 1128.74344
[34] Sapountzakis, E. J.; Mokos, V. G., A BEM solution to transverse shear loading of beams, Comput Mech, 36, 384-397 (2005) · Zbl 1138.74413
[35] Barone, G.; Pirrotta, A.; Santoro, R., Comparison among three boundary element methods for torsion problems: CPM, CVBEM, LEM, Eng Anal Boundary Elem, 35, 895-907 (2011) · Zbl 1259.74034
[36] Cheng, A. H.-D.; Cheng, D. T., Heritage and early history of the boundary element method, Eng Anal Boundary Elem, 29, 268-302 (2005) · Zbl 1182.65005
[37] Gaspari, D.; Aristodemo, M., Torsion and flexure analysis of orthotropic beams by a boundary element model, Eng Anal Boundary Elem, 27, 850-858 (2005) · Zbl 1182.74215
[38] Dikaros, I. C.; Sapountzakis, E. J., Nonuniform shear warping effect in the analysis of composite beams by BEM, Eng Struct, 76, 215-234 (2014)
[39] Denda, M.; Dong, F. Y., A unified formulation and error estimation measure for the direct and the indirect boundary element methods in elasticity, Eng Anal Boundary Elem, 25, 557-564 (2001) · Zbl 1040.74052
[40] Sladek, V.; Sladek, J.; Tanaka, M., Regularization of hypersingular and nearly singular integrals in the potential theory and elasticity, Int J Numer Methods Eng, 36, 1609-1628 (1993) · Zbl 0772.73091
[41] Ma, H.; Kamiya, N., Distance transformation for the numerical evaluation of near singular boundary integrals with various kernels in boundary element method, Eng Anal Boundary Elem, 26, 329-339 (2002) · Zbl 1003.65133
[42] Xie, G.; Zhang, J.; Qin, X.; Li, G., New variable transformations for evaluating nearly singular integrals in 2D boundary element method, Eng Anal Boundary Elem, 35, 811-817 (2011) · Zbl 1259.65185
[43] Hayami, K.; Matsumoto, H., A numerical quadrature for nearly singular boundary element integrals, Eng Anal Boundary Elem, 13, 143-154 (1994)
[44] Hayami, K., Variable transformations for nearly singular integrals in the boundary element method, Publ Res Inst Math Sci, 41, 821-842 (2005) · Zbl 1100.65109
[45] Gao, X.-W.; Yang, K.; Wang, J., An adaptive element subdivision technique for evaluation of various 2D singular boundary integrals, Eng Anal Boundary Elem, 32, 692-696 (2008) · Zbl 1244.65199
[46] Gao, X.-W., Numerical evaluation of two-dimensional singular boundary integrals-theory and Fortran code, J Comput Appl Math, 188, 44-64 (2006) · Zbl 1086.65019
[47] Padhi, G.; Shenoi, R.; Moy, S.; McCarthy, M., Analytic integration of kernel shape function product integrals in the boundary element method, Comput Struct, 79, 1325-1333 (2001)
[48] Zhou, H.; Niu, Z.; Cheng, C.; Guan, Z., Analytical integral algorithm applied to boundary layer effect and thin body effect in BEM for anisotropic potential problems, Comput Struct, 86, 1656-1671 (2008)
[49] Niu, Z.; Cheng, C.; Zhou, H.; Hu, Z., Analytic formulations for calculating nearly singular integrals in two-dimensional BEM, Eng Anal Boundary Elem, 31, 949-964 (2007) · Zbl 1259.74056
[50] Chen, H.; Lu, P.; Schnack, E., Regularized algorithms for the calculation of values on and near boundaries in 2D elastic BEM, Eng Anal Boundary Elem, 25, 851-876 (2001) · Zbl 1051.74050
[51] Johnston, P. R.; Elliott, D., A sinh transformation for evaluating nearly singular boundary element integrals, Int J Numer Methods Eng, 62, 564-578 (2005) · Zbl 1119.65318
[52] Johnston, P. R.; Johnston, B. M.; Elliott, D., Using the iterated sinh transformation to evaluate two dimensional nearly singular boundary element integrals, Eng Anal Boundary Elem, 37, 708-718 (2013) · Zbl 1297.65179
[53] Xie, G.; Zhang, J.; Dong, Y.; Huang, C.; Li, G., An improved exponential transformation for nearly singular boundary element integrals in elasticity problems, Int J Solids Struct, 51, 1322-1329 (2014)
[54] Zieniuk, E., Potential problems with polygonal boundaries by a BEM with parametric linear functions, Eng Anal Boundary Elem, 25, 185-190 (2001) · Zbl 0985.80007
[55] Chen, J. T.; Lin, S. R.; Chen, K. H., Degenerate scale problem when solving Laplace’s equation by BEM and its treatment, Int J Numer Methods Eng, 62, 233-261 (2005) · Zbl 1179.74161
[56] Chen, J. T.; Huang, W. S.; Lee, Y. T.; Kuo, S. R.; Kao, S. K., Revisit of degenerate scales in the BIEM/BEM for 2D elasticity problems, Mech Adv Mater Struct (2015)
[57] Li, Z. C.; Zhang, L. P.; Lee, M. G., Interior field methods for Neumann problems of Laplace’s equation in elliptic domains, comparisons with degenerate scales, Eng Anal Bound Elem, 71, 190-202 (2016) · Zbl 1403.65207
[58] Corfdir, A.; Bonnet, G., Degenerate scale for 2D Laplace equation with Robin boundary condition, Eng Anal Boundary Elem, 80, 49-57 (2017) · Zbl 1403.65191
[59] Yoon, M.; Yoon, G.; Min, C., On solving the singular system arisen from Poisson equation with Neumann boundary condition, J Sci Comput, 69, 391-405 (2016) · Zbl 1354.65222
[60] Katsikadelis, J. T., Boundary Elements: Theory and Applications (2002), Elsevier Science: Elsevier Science Amsterdam · Zbl 1051.74052
[61] Lutz, E.; Ye, W.; Mukherjee, S., Elimination of rigid body modes from discretized boundary integral equations, Int J Solids Struct, 35, 4427-4436 (1998) · Zbl 0930.74073
[62] Paradiso M., Vaiana N., Sessa S., Marmo F., Rosati L.. A BEM approach to the evaluation of warping functios in the Saint Venant theory - Supplementary material. 2019b. https://app.box.com/s/tlatc79fk7b7qh1oonakzqyqhyyienxu (accessed Dec. 2019). · Zbl 1464.74311
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.