×

Quivers from Higgs bundles over \(\mathbb{P}^1\) and quiver gauge theory. (English) Zbl 1431.81096

Summary: In this paper, we associate a Higgs bundle over \(\mathbb{P}^1\) with a Higgs quiver. We need to consider the Higgs representation of Higgs quivers, where the difference of Higgs representation from the usual linear representation is putting an \(\mathcal{O}_{\mathbb{P}^1} \)-module at each vertex in the quiver, and then changing the Higgs field on the underlying vector bundle is equivalent to changing the Higgs representations. We can also treat the space of Higgs fields as a space of the representations of the so-called Higgs structure quiver with the action of a reductive group. We produce some new quivers from the Higgs structure quiver and its representations, such as double quivers and Bogomol’nyi-Prasad-Sommerfield quivers related to quiver gauge theory, and study some topology of moduli space of corresponding stable representations, encoded in the structure of a Higgs bundle. We also introduce some algebraic structures on some vector spaces constructed from the Higgs structure quiver as the generalizations of classical Hall algebra and cohomological Hall algebra via bipartite quivers; the complexities of these algebraic structures are reflected in the nonassociativity of multiplications arising from preservation of some \((\mathbb{Z}_2)^r\)-graded structure.
©2020 American Institute of Physics

MSC:

81T13 Yang-Mills and other gauge theories in quantum field theory
16G20 Representations of quivers and partially ordered sets
14D21 Applications of vector bundles and moduli spaces in mathematical physics (twistor theory, instantons, quantum field theory)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alim, M.; Cecotti, S.; Córdova, C.; Espahbodi, S.; Rastogi, A.; Vafa, C., .\( \mathcal{N} = 2\) quantum field theories and their BPS quivers, Adv. Theor. Math. Phys., 18, 27-127 (2014) · Zbl 1309.81142 · doi:10.4310/atmp.2014.v18.n1.a2
[2] Álvarez-Cónsul, L., Some results on the moduli spaces of quiver bundles, Geom. Dedicata, 139, 99-120 (2009) · Zbl 1170.14007 · doi:10.1007/s10711-008-9327-0
[3] Álvarez-Cónsul, L.; García-Prada, O., Dimensional reduction and quiver bundles, J. Reine Angew. Math., 556, 1-46 (2003) · Zbl 1020.53047 · doi:10.1515/crll.2003.021
[4] Behrend, K.; Bryan, J.; Szendroi, B., Motivic degree zero Donaldson-Thomas invariants, Invent. Math., 192, 111-160 (2013) · Zbl 1267.14008 · doi:10.1007/s00222-012-0408-1
[5] Bose, S.; Gundry, J.; He, Y.-H., Gauge theories and dessins d’enfants: Beyond the torus, J. High Energy Phys., 2015, 135 · Zbl 1388.81493 · doi:10.1007/jhep01(2015)135
[6] Buch, A. S.; Fulton, W., Chern class formulas for quiver varieties, Invent. Math., 135, 665-687 (1999) · Zbl 0942.14027 · doi:10.1007/s002220050297
[7] Crawley-Boevey, W.; Van den Bergh, M., Absolutely indecomposable representations and Kac-Moody Lie algebras, Invent. Math., 155, 537-559 (2004) · Zbl 1065.16009 · doi:10.1007/s00222-003-0329-0
[8] Dobrovolska, G.; Ginzburg, V.; Travkin, R., Moduli spaces, indecomposable objects and potentials over a finite field
[9] García-Prada, O.; Heinloth, J.; Schmitt, A., On the motives of moduli of chains and Higgs bundles, J. Eur. Math. Soc., 16, 2617-2668 (2014) · Zbl 1316.14060 · doi:10.4171/jems/494
[10] Gothen, P.; King, A., Homological algebra of twisted quiver bundles, J. London Math. Soc., 71, 85-99 (2005) · Zbl 1095.14012 · doi:10.1112/s0024610704005952
[11] Gothen, P.; Nozad, A., Quiver bundles and wall crossing for chains, Geom. Dedicata, 199, 137-146 (2019) · Zbl 1455.14068 · doi:10.1007/s10711-018-0341-6
[12] Hausel, T.; Letellier, E.; Rodriguez-Villegas, F., Positivity for Kac polynormials and DT-invariants of quivers, Ann. Math., 177, 1147-1168 (2013) · Zbl 1301.16015 · doi:10.4007/annals.2013.177.3.8
[13] He, Y.-H.; Read, J., Dessins d’enfants in \(\mathcal{N} = 2\) generalised quiver theories, J. High Energy Phys., 2015, 085 · Zbl 1388.81830 · doi:10.1007/jhep08(2015)085
[14] Hitchin, N. J., The self-duality equations on a Riemann surface, Proc. London Math. Soc., s3-55, 59-126 (1987) · Zbl 0634.53045 · doi:10.1112/plms/s3-55.1.59
[15] Hitchin, N. J., Generalized holomorphic bundles and the B-field action, J. Geom. Phys., 61, 352-362 (2011) · Zbl 1210.53079 · doi:10.1016/j.geomphys.2010.10.014
[16] Hua, J., Counting representations of quivers over finite fields, J. Algebra, 226, 1011-1033 (2000) · Zbl 0972.16006 · doi:10.1006/jabr.1999.8220
[17] Huang, P.; Hu, Z., Stability and indecomposability of the representations of quivers of A_n-type · Zbl 1478.16010
[18] Kac, V. G., Root systems, representations of quivers and invariant theory, Invariant Theory (Montecatini, 1982), 74-108 (1983), Springer Verlag: Springer Verlag, New York · Zbl 0534.14004
[19] Kenyon, R.; Sheffield, S.; Okounkov, A., Dimers and amoebae, Ann. Math., 163, 1019-1056 (2006) · Zbl 1154.82007 · doi:10.4007/annals.2006.163.1019
[20] Kim, B.; Lee, H., Wall-crossings for twisted quiver bundles, Int. J. Math., 24, 1350038 (2013) · Zbl 1282.14096 · doi:10.1142/s0129167x13500389
[21] King, A. D., Moduli of representations of finite-dimensional algebras, Q. J. Math., 45, 515-530 (1994) · Zbl 0837.16005 · doi:10.1093/qmath/45.4.515
[22] Kirillov, A. Jr., Quiver Representations and Quiver Varieties (2016), American Mathematical Society · Zbl 1355.16002
[23] Kontsevich, M.; Soibelman, Y., Stability structures, motivic Donaldson-Thomas invariants and cluster transformations · Zbl 1202.81120
[24] Kontsevich, M.; Soibelman, Y., Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson-Thomas invariants, Commun. Number Theory Phys., 5, 231-352 (2011) · Zbl 1248.14060 · doi:10.4310/cntp.2011.v5.n2.a1
[25] Kucharczyk, R., Modular embeddings and automorphic Higgs bundles, Algebraic Geom., 5, 200-238 (2018) · Zbl 1446.11115 · doi:10.14231/ag-2018-007
[26] Lando, S. K.; Zvonkin, A. K., Graphs on Surfaces and Their Applications (2004), Springer · Zbl 1040.05001
[27] Manschot, J.; Pioline, B.; Sen, A., Wall crossing from Boltzmann black hole Halos, J. High Energy Phys., 2011, 059 · Zbl 1298.81320 · doi:10.1007/jhep07(2011)059
[28] Mozgovoy, S., Solutions of the motivic ADHM recursion formula, Int. Math. Res. Not., 18, 4218-4244 (2012) · Zbl 1262.14015 · doi:10.1093/imrn/rnr187
[29] Mozgovoy, S., Quiver representations in abelian categories, J. Algebra, 541, 35-50 (2020) · Zbl 1481.16017 · doi:10.1016/j.jalgebra.2019.08.027
[30] Rayan, S., Geometry of co-Higgs bundles (2011), University of Oxford: University of Oxford, Oxford
[31] Rayan, S., The quiver at the bottom of the twisted nilpotent cone on \(\mathbb{P}^1\)., Eur. J. Math., 3, 1-21 (2017) · Zbl 1386.14061 · doi:10.1007/s40879-016-0120-6
[32] Rayan, S.; Sundbo, E., Twisted argyle quivers and Higgs bundles, Bull. Sci. Math., 146, 1-32 (2018) · Zbl 1435.14012 · doi:10.1016/j.bulsci.2018.03.003
[33] Rayan, S.; Sundbo, E., Twisted cyclic quiver varieties on curves, Eur. J. Math. · Zbl 07342854 · doi:10.1007/s40879-019-00365-0
[34] Reineke, M., The Harder-Narasimhan system in quantum groups and cohomology of quiver moduli, Invent. Math., 152, 349-368 (2003) · Zbl 1043.17010 · doi:10.1007/s00222-002-0273-4
[35] Reineke, M., Degenerate cohomological Hall algebra and quantized Donaldson-Thomas invariants for m-loop quivers, Doc. Math., 17, 1-22 (2012) · Zbl 1280.16018
[36] Ringel, C. M., Hall algebras and quantum groups, Invent. Math., 101, 583-591 (1990) · Zbl 0735.16009 · doi:10.1007/bf01231516
[37] Schneps, L., The Grothendieck Theory of Dessins d’Enfants (1994), Cambridge University Press · Zbl 0798.00001
[38] Soibelman, A., The moduli stack of parabolic bundles over the projective line, quiver representations, and the Deligne-Simpson problem
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.