×

Features of the polynomial biplot for ordered contingency tables. (English) Zbl 07547620

Summary: For more than 20 years, variants of correspondence analysis have arisen that accommodate for the structure of ordered categorical variables using orthogonal polynomials. When the visual display from this analysis is the biplot, projections linking the origin to the standard coordinate of each category is a common feature. In the case when a column variable, say, consists of ordered categories, the biplot can be constructed so that their standard coordinate is determined using orthogonal polynomials which require a set of a priori scores that reflect the ordered structure of the categories. When the first two polynomials are used to construct the biplot they produce a configuration of standard coordinates that appear to be parabolic in shape. This article verifies the exact nature of this parabolic relationship and examines the various features of this configuration of points. Particular emphasis is given to the focus, vertex, intercepts and directrix of this relationship and we also briefly examine the impact of choosing different a priori scores on these features. The R function, parabola.exe(), used to perform these calculates is included as to this article. Supplementary files for this article are available online.

MSC:

62-XX Statistics
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Adams, R. A., Calculus of Several Variables (1987), Ontario, Canada: Addison-Wesley Publishers, Ontario, Canada
[2] Anderson, R. L.; Houseman, E. E., “Tables of Orthogonal Polynomial Values Extended to n = 104. Iowa State Agricultural Experiment Station Statistical Section,”, Research Bulletin No. 297 (1942) · Zbl 0061.30411
[3] Beh, E. J., “Simple Correspondence Analysis of Ordinal Cross-Classifications Using Orthogonal Polynomials, Biometrical Journal, 39, 589-613 (1997) · Zbl 1127.62370
[4] Beh, E. J., “A Comparative Study of Scores for Correspondence Analysis With Ordered Categories, Biometrical Journal, 40, 413-429 (1998) · Zbl 1008.62612
[5] Beh, E. J.; Lombardo, R., Correspondence Analysis: Theory, Practice and New Strategies (2014), Chichester: Wiley, Chichester · Zbl 1304.62001
[6] Beh, E. J.; Lombardo, R., An Introduction to Correspondence Analysis (2021), Chichester: Wiley, Chichester
[7] Beh, E. J.; Smith, D. R., “Real World Occupational Epidemiology, Part 1: Odds Ratios, Relative Risk, and Asbestosis, Archives of Environmental & Occupational Health, 66, 119-123 (2011)
[8] Beh, E. J.; Smith, D. R., “Real World Occupational Epidemiology, Part 2: A Visual Interpretation of Statistical Significance, Archives of Environmental & Occupational Health, 66, 245-248 (2011)
[9] Best, D. J.; Rayner, J. C. W., “Goodness-of-Fit for Grouped Data Using Components of Pearson’s \(####\),”, Computational Statistics & Data Analysis, 5, 53-57 (1987)
[10] Best, D. J.; Rayner, J. C. W., “Nonparametric Analysis for Doubly Ordered Two-Way Contingency Tables, Biometrics, 52, 1153-1156 (1996) · Zbl 0875.62236
[11] Best, D. J.; Rayner, J. C. W., “Nonparametric Analysis of Ordinal Categorical Response Data With Factorial Structure, Applied Statistics, 47, 439-446 (1998) · Zbl 0905.62063
[12] Best, D. J.; Rayner, J. C. W.; O’Sullivan, M. G., “Product Maps for Consumer Categorical Data,”, Food Quality and Preference, 11, 91-97 (2000)
[13] Cecere, S.; Groenen, P. J. F.; Lesaffre, E., “The Interval-Censored Biplot,”, Journal of Computational and Graphical Statistics, 22, 123-134 (2013)
[14] Emerson, P. L., “Numerical Construction of Orthogonal Polynomials From General Recurrence Formula, Biometrics, 24, 696-701 (1968)
[15] Fisher, R. A.; Yates, F., Statistical Tables for Biological, Agricultural and Medical Research (1938), Edinburgh: Oliver and Boyd, Edinburgh · JFM 64.1202.02
[16] Gabriel, K. R., “The Biplot Graphic Display of Matrices With Application to Principal Component Analysis, Biometrika, 58, 453-467 (1971) · Zbl 0228.62034
[17] Gower, J. C., “Generalized Biplots, Biometrika, 79, 475-293 (1992) · Zbl 0775.62002
[18] Gower, J. C.; Groenen, P. J. F.; van de Velden, M., “Area Biplots,”, Journal of Computational and Graphical Statistics, 19, 46-61 (2010)
[19] Gower, J. C.; Lubbe, S.; Le Roux, N., Understanding Biplots (2011), Chichester: Wiley, Chichester
[20] Greenacre, M., Biplots in Practice (2010), Barcelona: Fundacion BBVA, Barcelona
[21] Greenacre, M., “Contribution Biplots, Journal of Computational and Graphical Statistics, 22, 107-122 (2013)
[22] Greenacre, M.; Groenen, P. J. F., “Weighted Euclidean Biplots,”, Journal of Classification, 33, 442-459 (2016) · Zbl 1364.62151
[23] Greenacre, M. J., “Biplots in Correspondence Analysis, Journal of Applied Statistics, 20, 251-269 (1993)
[24] Groenen, P. J. F.; Le Roux, N. J.; Gardner-Lubbe, S., “Spline-Based Nonlinear Biplots,”, Advances in Data Analysis and Classification, 9, 219-238 (2015) · Zbl 1414.62209
[25] Hudson, D. J., “Corrections: Numerical Construction of Orthogonal Polynomials From a General Recurrence Relation, Biometrics, 25, 778 (1969)
[26] Kendall, M.; Stuart, A., The Advanced Theory of Statistics, 2 (1961), London: Charles Griffin & Company Ltd, London
[27] Kimball, B. F., “Orthogonal Polynomials Applied to Least Square Fitting of Weighted Observations, Annals of Mathematical Statistics, 11, 348-352 (1940) · JFM 66.0658.02
[28] Lombardo, R.; Beh, E. J.; D’Ambra, L., “Non-Symmetric Correspondence Analysis With Ordinal Variables Using Orthogonal Polynomials,”, Computational Statistics and Data Analysis, 27, 191-210 (2007) · Zbl 1452.62396
[29] Lombardo, R.; Beh, E. J.; Kroonenberg, P., “Symmetrical and Non-Symmetrical Variants of Three-Way Correspondence Analysis for Ordered Variables,”, Statistical Science, 36, 542-561 (2021) · Zbl 07473935
[30] Lombardo, R.; Beh, E. J.; Kroonenberg, P. M., “Modelling Trends in Ordered Correspondence Analysis Using Orthogonal Polynomials,”, Psychometrika, 81, 325-349 (2016) · Zbl 1345.62157
[31] Lombardo, R.; Camminatiello, I., “CATANOVA for Two-Way Cross-Classified Categorical Data,”, Statistics, 44, 57-71 (2010) · Zbl 1291.62138
[32] Lombardo, R.; Meulman, J. J., “Multiple Correspondence Analysis Via Polynomial Transformations of Ordered Categorical Variables,”, Journal of Classification, 27, 191-210 (2010) · Zbl 1337.62124
[33] Pearson, E. S.; Hartley, H. O., Biometrika Tables for Statisticians: Volume, 1 (1958), London: Cambridge University Press, London · Zbl 0056.12701
[34] Rayner, J. C. W.; Beh, E. J., “Towards a Better Understanding of Correlation,”, Statistica Neerlandica, 63, 324-333 (2009)
[35] Rayner, J. C. W.; Best, D. J., “Smooth Extensions of Pearson’s Product Moment Correlation and Spearman’s Rho,”, Statistics & Probability Letters, 30, 171-177 (1996) · Zbl 0861.62043
[36] Rayner, J. C. W.; Best, D. J., A Contingency Table Approach to Nonparametric Testing (2000), Boca Raton: Chapman & Hall/CRC Press, Boca Raton · Zbl 0973.62047
[37] Rayner, J. C. W.; Thas, O.; Best, D. J., Smooth Tests of Goodness of Fit Using R (2000), Hoboken: Wiley, Hoboken · Zbl 1171.62015
[38] Rayner, J. C. W.; Thas, O.; De Boeck, B., “A Generalized Emerson Recurrence Relation, Australian and New Zealand Journal of Statistics, 50, 235-240 (2008) · Zbl 1337.60014
[39] Robson, D. S., “A Simple Method for Constructing Orthogonal Polynomials When the Independent Variable is Unequally Spaced, Biometrics, 15, 187-191 (1959) · Zbl 0085.13711
[40] Selikoff, I. J., “Household Risks With Inorganic Fibers, Bulletin of the New York Academy of Medicine, 57, 947-961 (1981)
[41] Thas, O.; Rayner, J. C. W., “Smooth Tests for the Zero-Inflated Poisson Distribution,”, Biometrics, 61, 808-815 (2005) · Zbl 1078.62015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.