×

Mathematical and numerical analyses of a stochastic impulse control model with imperfect interventions. (English) Zbl 1490.93135

MSC:

93E20 Optimal stochastic control
93C27 Impulsive control/observation systems
49J40 Variational inequalities
49L20 Dynamic programming in optimal control and differential games
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Adame, MF; Hermoso, V.; Perhans, K.; Lovelock, CE; Herrera-Silveira, JA, Selecting cost-effective areas for restoration of ecosystem services, Conserv Biol, 29, 493-502 (2015) · doi:10.1111/cobi.12391
[2] Carolus, JF; Hanley, N.; Olsen, SB; Pedersen, SM, A bottom-up approach to environmental cost-benefit analysis, Ecol Econ, 152, 282-295 (2018) · doi:10.1016/j.ecolecon.2018.06.009
[3] Epanchin-Niell, RS; Hastings, A., Controlling established invaders: integrating economics and spread dynamics to determine optimal management, Ecol Lett, 13, 528-541 (2010) · doi:10.1111/j.1461-0248.2010.01440.x
[4] Iwasa, Y.; Uchida, T.; Yokomizo, H., Nonlinear behavior of the socio-economic dynamics for lake eutrophication control, Ecol Econ, 63, 219-229 (2017) · doi:10.1016/j.ecolecon.2006.11.003
[5] Foucart, R.; Garsous, G., Climate change mitigation with technology spillovers, Environ Resour Econ, 71, 507-527 (2018) · doi:10.1007/s10640-017-0170-3
[6] Smith, GC; Parrott, D.; Robertson, PA, Managing wildlife populations with uncertainty: cormorants Phalacrocorax carbo, J Appl Ecol, 45, 1675-1682 (2008) · doi:10.1111/j.1365-2664.2008.01380.x
[7] Øksendal, B.; Sulem, A., Applied stochastic control of jump diffusions (2019), Cham: Springer, Cham · Zbl 1422.93001 · doi:10.1007/978-3-030-02781-0
[8] Kappen, HJ, Linear theory for control of nonlinear stochastic systems, Phys Rev Lett, 95 (2005) · doi:10.1103/PhysRevLett.95.200201
[9] Ullmo, D.; Swiecicki, I.; Gobron, T., Quadratic mean field games, Phys Rep, 799, 1-35 (2019) · Zbl 1400.91039 · doi:10.1016/j.physrep.2019.01.001
[10] Ivanov, D.; Dolgui, A.; Sokolov, B., Applicability of optimal control theory to adaptive supply chain planning and scheduling, Annu Rev Control, 36, 73-84 (2012) · doi:10.1016/j.arcontrol.2012.03.006
[11] Zavala, VM, Stochastic optimal control model for natural gas networks, Comput Chem Eng, 64, 103-113 (2014) · doi:10.1016/j.compchemeng.2014.02.002
[12] Fleming, WH; Soner, HM, Controlled Markov processes and viscosity solutions (2016), New York: Springer, New York · Zbl 1105.60005
[13] Pham, H., Continuous-time stochastic control and optimization with financial applications (2009), Berlin: Springer, Berlin · Zbl 1165.93039 · doi:10.1007/978-3-540-89500-8
[14] Ferrari, G.; Koch, T., On a strategic model of pollution control, Ann Oper Res, 275, 297-319 (2019) · Zbl 1426.91182 · doi:10.1007/s10479-018-2935-7
[15] Forsyth, PA; Vetzal, KR, Numerical methods for nonlinear PDEs in finance, Handbook of computational finance, 503-528 (2012), Berlin: Springer, Berlin · Zbl 1229.91337 · doi:10.1007/978-3-642-17254-0_18
[16] Neilan, M.; Salgado, AJ; Zhang, W., Numerical analysis of strongly nonlinear PDEs, Acta Numer, 26, 137-303 (2017) · Zbl 1381.65092 · doi:10.1017/S0962492917000071
[17] Oberman, AM, Convergent difference schemes for degenerate elliptic and parabolic equations: Hamilton-Jacobi equations and free boundary problems, SIAM J Numer Anal, 44, 879-895 (2016) · Zbl 1124.65103 · doi:10.1137/S0036142903435235
[18] Lande, R.; Engen, S.; Saether, BE, Stochastic population dynamics in ecology and conservation (2003), Oxford: Oxford University Press on Demand, Oxford · doi:10.1093/acprof:oso/9780198525257.001.0001
[19] Kharroubi, I.; Lim, T.; Vath, VL, Optimal exploitation of a resource with stochastic population dynamics and delayed renewal, J Math Anal Appl (2019) · Zbl 1422.91573 · doi:10.1016/j.jmaa.2019.04.052
[20] Marten, AL; Moore, CC, An options based bioeconomic model for biological and chemical control of invasive species, Ecol Econ, 70, 2050-2061 (2011) · doi:10.1016/j.ecolecon.2011.05.022
[21] Yaegashi, Y.; Yoshioka, H.; Unami, K.; Fujihara, M., A singular stochastic control model for sustainable population management of the fish-eating waterfowl Phalacrocorax carbo, J Environ Manag, 219, 18-27 (2018) · doi:10.1016/j.jenvman.2018.04.099
[22] Yoshioka, H.; Yaegashi, Y., Robust stochastic control modeling of dam discharge to suppress overgrowth of downstream harmful algae, Appl Stoch Models Bus, 34, 338-354 (2018) · Zbl 1408.93152 · doi:10.1002/asmb.2301
[23] Boettiger, C.; Bode, M.; Sanchirico, JN; LaRiviere, J.; Hastings, A.; Armsworth, PR, Optimal management of a stochastically varying population when policy adjustment is costly, Ecol Appl, 26, 808-817 (2016) · doi:10.1890/15-0236
[24] Dee, LE; De Lara, M.; Costello, C.; Gaines, SD, To what extent can ecosystem services motivate protecting biodiversity?, Ecol Lett, 20, 935-946 (2017) · doi:10.1111/ele.12790
[25] Zou, X.; Wang, K., Optimal harvesting for a stochastic Lotka-Volterra predator-prey system with jumps and nonselective harvesting hypothesis, Optim Control Appl Methods, 37, 4, 641-662 (2016) · Zbl 1343.93103 · doi:10.1002/oca.2185
[26] Chu, L.; Kompas, T.; Grafton, Q., Impulse controls and uncertainty in economics: method and application, Environ Model Softw, 65, 50-57 (2015) · doi:10.1016/j.envsoft.2014.11.027
[27] Yu, R.; Leung, P., Optimal partial harvesting schedule for aquaculture operations, Mar Resour Econ, 21, 301-315 (2006) · doi:10.1086/mre.21.3.42629513
[28] Chen, S.; Insley, M., Regime switching in stochastic models of commodity prices: an application to an optimal tree harvesting problem, J Econ Dyn Control, 36, 201-219 (2018) · Zbl 1238.91111 · doi:10.1016/j.jedc.2011.08.010
[29] Helmes, KL; Stockbridge, RH, Thinning and harvesting in stochastic forest models, J Econ Dyn Control, 35, 25-39 (2011) · Zbl 1232.91553 · doi:10.1016/j.jedc.2010.10.007
[30] Yaegashi, Y.; Yoshioka, H.; Unami, K.; Fujihara, M., Impulse and singular stochastic control approaches for management of fish-eating bird population, New trends in emerging complex real life problems, 493-500 (2019), Cham: Springer, Cham · doi:10.1007/978-3-030-00473-6_52
[31] Christensen, S., On the solution of general impulse control problems using superharmonic functions, Stoch Process Appl, 124, 709-729 (2014) · Zbl 1281.49033 · doi:10.1016/j.spa.2013.09.008
[32] Hu, G.; Tian, K., On hybrid stochastic population models with impulsive perturbations, J Biol Dyn, 13, 1, 385-406 (2019) · Zbl 1448.92198 · doi:10.1080/17513758.2019.1609607
[33] Leander, R.; Lenhart, S.; Protopopescu, V., Optimal control of continuous systems with impulse controls, Optim Control Appl Methods, 36, 535-549 (2015) · Zbl 1329.49063 · doi:10.1002/oca.2128
[34] Li, J., Analytical fuel-optimal impulsive reconfiguration of formation-flying satellites, Optim Control Appl Methods, 38, 720-743 (2017) · Zbl 1377.49044 · doi:10.1002/oca.2286
[35] Li, J., Analytical fuel-optimal impulsive reconfiguration of formation-flying satellites: a revisit and new results, Optim Control Appl Methods, 39, 1243-1261 (2018) · Zbl 1401.49047 · doi:10.1002/oca.2408
[36] Bregnballe, T.; Hyldgaard, AM; Clausen, KK; Carss, DN, What does three years of hunting great cormorants, Phalacrocorax carbo, tell us? Shooting autumn-staging birds as a means of reducing numbers locally, Pest Manag Sci, 71, 173-179 (2015) · doi:10.1002/ps.3782
[37] Korn, R., Optimal impulse control when control actions have random consequences, Math Oper Res, 22, 3, 639-667 (1997) · Zbl 0881.93091 · doi:10.1287/moor.22.3.639
[38] Helmes KL, Stockbridge RH, Zhu C. On the modelling of uncertain impulse control for continuous Markov processes. arXiv preprint. arXiv:1908.08357 (2019).
[39] Bertola, G.; Runggaldier, WJ; Yasuda, K., On classical and restricted impulse stochastic control for the exchange rate, Appl Math Optim, 74, 423-454 (2016) · Zbl 1358.93187 · doi:10.1007/s00245-015-9320-6
[40] El-Ghandour, L.; Johnson, TC, A methodology to assess the economic impact of power storage technologies, Philos Trans R Soc Lond A, 375 (2017) · Zbl 1406.91291 · doi:10.1098/rsta.2016.0303
[41] Liu, J.; Yiu, KFC; Bensoussan, A., Ergodic control for a mean reverting inventory model, J Ind Manag Optim, 14, 857-876 (2018) · Zbl 1412.35187 · doi:10.3934/jimo.2017079
[42] Azimzadeh, P.; Bayraktar, E.; Labahn, G., Convergence of implicit schemes for Hamilton-Jacobi-Bellman quasi-variational inequalities, SIAM J Control Optim, 56, 3994-4016 (2018) · Zbl 1405.49021 · doi:10.1137/18M1171965
[43] Crandall, MG; Ishii, H.; Lions, PL, User’s guide to viscosity solutions of second order partial differential equations, Bull Am Math Soc, 27, 1-67 (1992) · Zbl 0755.35015 · doi:10.1090/S0273-0979-1992-00266-5
[44] Yaegashi, Y.; Yoshioka, H.; Unami, K.; Fujihara, M., A stochastic impulsive control model for population management of fish-eating bird Pharacrocorax carbo and its numerical computation, AsiaSim2018, October 27-29, Kyoto, Japan, Commun Comput Inf Sci, 946, 425-438 (2018)
[45] Aslaksen, I.; Nybø, S.; Framstad, E.; Garnåsjordet, PA; Skarpaas, SO, Biodiversity and ecosystem services: the nature index for Norway, Ecosyst Serv, 12, 108-116 (2015) · doi:10.1016/j.ecoser.2014.11.002
[46] Green, AJ; Elmberg, J., Ecosystem services provided by waterbirds, Biol Rev, 89, 105-122 (2014) · doi:10.1111/brv.12045
[47] Davis, MH; Guo, X.; Wu, G., Impulse control of multidimensional jump diffusions, SIAM J Control Optim, 48, 5276-5293 (2010) · Zbl 1208.49045 · doi:10.1137/090780419
[48] Guo, X.; Wu, G., Smooth fit principle for impulse control of multidimensional diffusion processes, SIAM J Control Optim, 48, 594-617 (2009) · Zbl 1194.49016 · doi:10.1137/080716001
[49] Cont, R.; Voltchkova, E., A finite difference scheme for option pricing in jump diffusion and exponential Lévy models, SIAM J Numer Anal, 43, 1596-1626 (2015) · Zbl 1101.47059 · doi:10.1137/S0036142903436186
[50] Yaegashi, Y.; Yoshioka, H.; Tsugihashi, K.; Fujihara, M., Analysis and computation of probability density functions for a 1-D impulsively controlled diffusion process, C R Math, 357, 306-315 (2019) · Zbl 1501.60044 · doi:10.1016/j.crma.2019.02.007
[51] Yao, D.; Wang, R.; Xu, L., Optimal asset control of a geometric Brownian motion with the transaction costs and bankruptcy permission, J Ind Manag Optim, 11, 461-478 (2015) · Zbl 1307.93470 · doi:10.3934/jimo.2015.11.461
[52] van Staden, PM; Dang, DM; Forsyth, PA, Time-consistent mean-variance portfolio optimization: a numerical impulse control approach, Insur Math Econ, 83, 9-28 (2018) · Zbl 1417.91558 · doi:10.1016/j.insmatheco.2018.08.003
[53] Wang, J.; Forsyth, PA, Maximal use of central differencing for Hamilton-Jacobi-Bellman PDEs in finance, SIAM J Numer Anal, 46, 1580-1601 (2008) · Zbl 1166.65046 · doi:10.1137/06067518
[54] Ohnishi, M.; Tsujimura, M., An impulse control of a geometric Brownian motion with quadratic costs, Eur J Oper Res, 168, 311-321 (2006) · Zbl 1099.93045 · doi:10.1016/j.ejor.2004.07.006
[55] Hu, Y.; Liu, Z.; Wu, J., Optimal impulse control of a mean-reverting inventory with quadratic costs, J Ind Manag Optim, 14, 1685-1700 (2018) · doi:10.3934/jimo.2018027
[56] Yaegashi, Y.; Yoshioka, H.; Tsugihashi, K.; Fujihara, M., An exact viscosity solution to a Hamilton-Jacobi-Bellman quasi-variational inequality for animal population management, J Math Ind, 9 (2019) · doi:10.1186/s13362-019-0062-y
[57] Quarteroni, A., Numerical models for differential problems (2017), Milan: Springer, Milan · Zbl 1436.65003 · doi:10.1007/978-3-319-49316-9
[58] Dixit, AK; Dixit, RK; Pindyck, RS, Investment under uncertainty (1994), Princeton: Princeton University Press, Princeton · doi:10.1515/9781400830176
[59] Hulthén, K., A predation cost to bold fish in the wild, Sci Rep, 7 (2017) · doi:10.1038/s41598-017-01270-w
[60] Latli, A., Long-term trends in trait structure of riverine communities facing predation risk increase and trophic resource decline, Ecol Appl, 27, 2458-2474 (2017) · doi:10.1002/eap.1621
[61] Klimaszyk, P.; Rzymski, P., The complexity of ecological impacts induced by great cormorants, Hydrobiologia, 771, 13-30 (2016) · doi:10.1007/s10750-015-2618-1
[62] Barles, G.; Souganidis, PE, Convergence of approximation schemes for fully nonlinear second order equations, Asymptot Anal, 4, 271-283 (1991) · Zbl 0729.65077 · doi:10.3233/ASY-1991-4305
[63] Ferretti, R.; Sassi, A.; Zidani, H., Error estimates for numerical approximation of Hamilton-Jacobi equations related to hybrid control systems, Appl Math Optim (2018) · Zbl 1461.49037 · doi:10.1007/s00245-018-9515-8
[64] Frederiksen, M.; Lebreton, JD; Bregnballe, T., The interplay between culling and density-dependence in the great cormorant: a modelling approach, J Appl Ecol, 38, 617-627 (2001) · doi:10.1046/j.1365-2664.2001.00620.x
[65] Watanuki, Y., Microhabitat use and prey capture of a bottom-feeding top predator, the European shag, shown by camera loggers, Mar Ecol Prog Ser, 356, 283-293 (2008) · doi:10.3354/meps07266
[66] Hagen, R.; Kramer-Schadt, S.; Fahse, L.; Heurich, M., Population control based on abundance estimates: frequency does not compensate for uncertainty, Ecol Complex, 20, 43-50 (2014) · doi:10.1016/j.ecocom.2014.07.006
[67] Sims, C.; Horan, RD; Meadows, B., Come on feel the noise: ecological foundations in stochastic bioeconomic models, Nat Resour Model, 31 (2018) · doi:10.1111/nrm.12191
[68] Yoshioka, H.; Yaegashi, Y.; Yoshioka, Y.; Hamagami, K., Hamilton-Jacobi-Bellman quasi-variational inequality arising in an environmental problem and its numerical discretization, Comput Math Appl, 77, 2182-2206 (2019) · Zbl 1442.92199 · doi:10.1016/j.camwa.2018.12.004
[69] Yoshioka, H., A simplified stochastic optimization model for logistic dynamics with control-dependent carrying capacity, J Biol Dyn, 13, 148-176 (2019) · Zbl 1448.92388 · doi:10.1080/17513758.2019.1576927
[70] Zhao, Y.; You, L.; Burkow, D.; Yuan, S., Optimal harvesting strategy of a stochastic inshore-offshore hairtail fishery model driven by Lévy jumps in a polluted environment, Nonlinear Dyn, 95, 1529-1548 (2019) · Zbl 1439.92209 · doi:10.1007/s11071-018-4642-y
[71] Hansen, LP; Sargent, STJ, Robustness (2008), Princeton: Princeton University Press, Princeton · Zbl 1134.93001
[72] Yoshioka, H.; Yoshioka, Y., Modeling stochastic operation of reservoir under ambiguity with an emphasis on river management, Optim Control Appl Methods, 40, 764-790 (2019) · Zbl 1425.93307 · doi:10.1002/oca.2510
[73] do Val, JBR; Guillotreau, P.; Vallée, T., Fishery management under poorly known dynamics, Eur J Oper Res (2019) · Zbl 1430.49040 · doi:10.1016/j.ejor.2019.05.016
[74] Shardin, AA; Wunderlich, R., Partially observable stochastic optimal control problems for an energy storage, Stochastics, 89, 280-310 (2017) · Zbl 1364.49033 · doi:10.1080/17442508.2016.1166506
[75] Yoshioka, H.; Yaegashi, Y.; Yoshioka, Y.; Tsugihashi, K., Optimal harvesting policy of an inland fishery resource under incomplete information, Appl Stoch Models Bus (2018) · Zbl 1469.93125 · doi:10.1002/asmb.2428
[76] Duwal, S.; Winkelmann, S.; Schütte, C.; von Kleist, M., Optimal treatment strategies in the context of ‘treatment for prevention’ against HIV-1 in resource-poor settings, PLoS Comput Biol, 11, 4 (2015) · doi:10.1371/journal.pcbi.1004200
[77] Dyrssen, H.; Ekström, E., Sequential testing of a Wiener process with costly observations, Seq Anal, 37, 47-58 (2018) · Zbl 1486.62231 · doi:10.1080/07474946.2018.1427973
[78] Zamani, I.; Shafiee, M., Stability analysis of uncertain switched singular time-delay systems with discrete and distributed delays, Optim Control Appl Methods, 36, 1-28 (2015) · Zbl 1315.93069 · doi:10.1002/oca.2097
[79] Yang, Y., Finite horizon optimal execution with bounded rate of transaction, Stoch Models (2019) · Zbl 1430.91102 · doi:10.1080/15326349.2019.1621760
[80] Federico, S.; Rosestolato, M.; Tacconi, E., Irreversible investment with fixed adjustment costs: a stochastic impulse control approach, Math Financ Econ (2017) · Zbl 1422.91649 · doi:10.1007/s11579-019-00238-w
[81] Ishii, K., Viscosity solutions of nonlinear second order elliptic PDEs associated with impulse control problems, Funkc Ekvacioj, 36, 123-141 (1993) · Zbl 0831.49024
[82] Crandall, MG; Ishi, H., The maximum principle for semicontinuous functions, Differ Integral Equ, 3, 1001-1014 (1990) · Zbl 0723.35015
[83] Wu, J., Optimal exchange rates management using stochastic impulse control for geometric Lévy processes, Math Methods Oper Res (2018) · Zbl 1410.91349 · doi:10.1007/s00186-018-0648-y
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.