Stability and bifurcation analysis of an HIV-1 infection model with a general incidence and CTL immune response. (English) Zbl 1484.92125

Summary: In this paper, with eclipse stage in consideration, we propose an HIV-1 infection model with a general incidence rate and CTL immune response. We first study the existence and local stability of equilibria, which is characterized by the basic infection reproduction number \(\mathcal{R}_0\) and the basic immunity reproduction number \(\mathcal{R}_1\). The local stability analysis indicates the occurrence of transcritical bifurcations of equilibria. We confirm the bifurcations at the disease-free equilibrium and the infected immune-free equilibrium with transmission rate and the decay rate of CTLs as bifurcation parameters, respectively. Then we apply the approach of Lyapunov functions to establish the global stability of the equilibria, which is determined by the two basic reproduction numbers. These theoretical results are supported with numerical simulations. Moreover, we also identify the high sensitivity parameters by carrying out the sensitivity analysis of the two basic reproduction numbers to the model parameters.


92D30 Epidemiology
34D23 Global stability of solutions to ordinary differential equations
34C23 Bifurcation theory for ordinary differential equations
Full Text: DOI


[1] Aavani, P.; Allen, L. J.S., The role of CD4 T cells in immune system activation and viral reproduction in a simple model for HIV infection, Appl. Math. Model., 75, 210-222 (2019) · Zbl 1481.92055
[2] Ali, S.; Raina, A. A.; Iqbal, J.; Mathur, R., Mathematical modeling and stability analysis of HIV/AIDS-TB co-infection, Palest. J. Math., 8, 380-391 (2019) · Zbl 1417.92168
[3] Biswas, D.; Palb, S., Stability analysis of a non-linear HIV/AIDS epidemic model with vaccination and antiretroviral therapy, Int. J. Adv. Appl. Math. Mech., 5, 41-50 (2017) · Zbl 1427.92057
[4] Buonomo, B.; Vargas-De-León, C., Global stability for an HIV-1 infection model including an eclipse stage of infected cells, J. Math. Anal. Appl., 385, 709-720 (2012) · Zbl 1223.92024
[5] Castillo-Chavez, C.; Song, B., Dynamical models of tuberculosis and their applications, Math. Biosci. Eng., 1, 361-404 (2004) · Zbl 1060.92041
[6] Chen, Q.; Teng, Z.; Wang, L.; Jiang, H., The existence of codimension-two bifurcation in a discrete SIS epidemic model with standard incidence, Nonlinear Dyn., 71, 55-73 (2013) · Zbl 1269.92062
[7] Ebert, D.; Zschokke-Rohringer, C. D.; Carius, H. J., Dose effects and density-dependent regulation of two microparasites of Daphania magna, Oecologia, 122, 200-209 (2000)
[8] Elaiw, A. M.; Al Agha, A. D., Stability of a general HIV-1 reaction-diffusion model with multiple delays and immune response, Phys. A, 536 (2019) · Zbl 07571520
[9] Faria, N. R.; Rambaut, A.; Suchard, M. A.; Baele, G.; Bedford, T.; Ward, M. J.; Tatem, A. J.; Sousa, J. D.; Arinaminpathy, N.; Pépin, J.; Posada, D.; Peeters, M.; Pybus, O. G.; Lemey, P., The early spread and epidemic ignition of HIV-1 in human populations, Science, 346, 56-61 (2014)
[10] Gallo, R. C.; Montagnier, L., The discovery of HIV as the cause of AIDS, N. Engl. J. Med., 349, 2283-2285 (2003)
[11] Hesaaraki, M.; Sabzevari, M., Global properties for an HIV-1 infection model including an eclipse stage of infected cells and saturation infection, Differ. Equ. Control Process., 4, 67-83 (2013) · Zbl 1412.92282
[12] Hill, A. L.; Rosenbloom, D. I.S.; Nowak, M. A.; Siliciano, R. F., Insight into treatment of HIV infection from viral dynamics models, Immunol. Rev., 285, 9-25 (2018)
[13] Hu, Z.; Pang, W.; Liao, F.; Ma, W., Analysis of a CD \(4####\) T cell viral infection model with a class of saturated infection rate, Discrete Contin. Dyn. Syst. Ser. B., 19, 735-745 (2014) · Zbl 1281.92040
[14] Kapitanov, G.; Alvey, C.; Vogt-Geisse, K.; Feng, Z., An age-structured model for the coupled dynamics of HIV and HSV-2, Math. Biosci. Eng., 12, 803-840 (2015) · Zbl 1369.92122
[15] Lai, X.; Zou, X., Modeling cell-to-cell spread of HIV-1 with logistic target cell growth, J. Math. Anal. Appl., 426, 563-584 (2015) · Zbl 1316.92086
[16] LaSalle, J. P.; Lefschetz, S., Stability by Lyapunov’s Direct Method (1961), Academic Press: Academic Press, New York
[17] Li, B.; Chen, Y.; Lu, X.; Liu, S., A delayed HIV-1 model with virus waning term, Math. Biosci. Eng., 13, 135-157 (2016) · Zbl 1329.34129
[18] Lv, C.; Huang, L.; Yuan, Z., Global stability for an HIV-1 infection model with Beddington-DeAngelis incidence rate and CTL immune response, Commun. Nonlinear Sci. Numer. Simul., 19, 121-127 (2014) · Zbl 1344.92173
[19] Malunguza, N. J.; Hove-Musekwa, S. D.; Dube, S.; Mukandavire, Z., Dynamical properties and thresholds of an HIV model with super-infection, Math. Med. Biol., 34, 493-522 (2017) · Zbl 1400.92524
[20] Maziane, M.; Hattaf, K.; Yousfi, N., Global stability of a class of HIV infection models with cure of infected cells in eclipse stage and CTL immune response, Int. J. Dynam. Control, 5, 1035-1045 (2017)
[21] Ngina, P.; Mbogo, R. W.; Luboobi, L. S., HIV drug resistance: insights from mathematical modelling, Appl. Math. Model., 75, 141-161 (2019) · Zbl 1481.92066
[22] Nowak, M.; Bangham, C., Population dynamics of immune responses to persistent viruses, Science, 272, 74-79 (1996)
[23] Numfor, E., Optimal treatment in a multi-strain within-host model of HIV with age structure, J. Math. Anal. Appl., 480, 2 (2019) · Zbl 1423.92199
[24] Nwankwo, A.; Okuonghae, D., Mathematical analysis of the transmission dynamics of HIV syphilis co-infection in the presence of treatment for syphilis, Bull. Math. Biol., 80, 437-492 (2018) · Zbl 1391.92051
[25] Perelson, A. S.; Ribeiro, R. M., Modeling the within-host dynamics of HIV infection, BMC Biol., 11, 123 (2013)
[26] Rong, L.; Gilchrist, M. A.; Feng, Z.; Perelson, A. S., Modeling within-host HIV-1 dynamics and the evolution of drug resistance: trade-offs between viral enzyme function and drug susceptibility, J. Theoret. Biol., 247, 804-818 (2007) · Zbl 1455.92087
[27] Sacha, J. B.; Chung, C.; Rakasz, E. G.; Spencer, S. P.; Jonas, A. K.; Bean, A. T.; Lee, W.; Burwitz, B. J.; Stephany, J. J.; Loffredo, J. T.; Allison, D. B.; Adnan, S.; Hoji, A.; Wilson, N. A.; Friedrich, T. C.; Lifson, J. D.; Yang, O. O.; Watkins, D. I., Gag-specific CD \(8####\) T lymphocytes recognize infected cells before AIDS-virus integration and viral protein expression, J. Immunol., 178, 5, 2746-2754 (2007)
[28] Sahani, S. K.; Yashi, Effects of eclipse phase and delay on the dynamics of HIV infection, J. Biol. Syst., 26, 421-454 (2018) · Zbl 1418.92191
[29] Shen, M.; Xiao, Y.; Rong, L., Global stability of an infection-age structured HIV-1 model linking within-host and between-host dynamics, Math. Biosci., 263, 37-50 (2015) · Zbl 1371.92130
[30] Song, X.; Neumann, A. U., Global stability and periodic solution of the viral dynamics, J. Math. Anal. Appl., 329, 281-297 (2007) · Zbl 1105.92011
[31] Sotomayor, J., Generic Bifurcations of Dynamical Systems, Dynamical systems, Academic Press, 1973. · Zbl 0296.58007
[32] Tarfulea, N., Drug therapy model with time delays for HIV infection with virus-to-cell and cell-to-cell transmissions, J. Appl. Math. Comput., 59, 677-691 (2019) · Zbl 1422.34244
[33] van den Driessche, P.; Watmough, J., Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180, 29-48 (2002) · Zbl 1015.92036
[34] World Health Organization, HIV/AIDS, software. Available at https://www.who.int/news-room/fact-sheets/detail/hiv-aids.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.