×

Inviscid suspension flow along a flat boundary. (English. Russian original) Zbl 1462.76196

Comput. Math. Math. Phys. 61, No. 3, 470-479 (2021); translation from Zh. Vychisl. Mat. Mat. Fiz. 61, No. 3, 493-503 (2021).
Summary: A previously developed self-consistent field method is used to study an arbitrary finite set of identical spherical particles of arbitrary density moving in a uniform inviscid incompressible flow specified at infinity in the presence of a flat wall. For a given initial particle distribution in space, expressions for the particle and fluid velocities are derived taking into account the collective hydrodynamic interaction of the particles with each other and the wall. For a statistically uniform particle distribution in a semibounded inviscid fluid, analytical averaged particle and fluid velocity profiles are obtained in the first approximation with respect to the particle volume fraction in the suspension.

MSC:

76T20 Suspensions
76B10 Jets and cavities, cavitation, free-streamline theory, water-entry problems, airfoil and hydrofoil theory, sloshing
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Hicks, W. M., On the motion of two spheres in a fluid, Philos. Trans., 171, 455-492 (1880) · JFM 12.0694.01 · doi:10.1098/rstl.1880.0013
[2] Basset, A. B., On the motion of two spheres in a liquid, and allied problems, Proc. London Math. Soc., 18, 369-377 (1886) · JFM 19.1163.10 · doi:10.1112/plms/s1-18.1.369
[3] Cunningham, E., On the velocity of steady fall of spherical particles through fluid medium, Proc. R. Soc. London A, 83, 357-365 (1910) · JFM 41.0843.05 · doi:10.1098/rspa.1910.0024
[4] Zuber, N., On the dispersed two-phase flow in the laminar flow regime, Chem. Eng. Sci., 19, 897-917 (1964) · doi:10.1016/0009-2509(64)85067-3
[5] Wijngaarden, L.; Jeffrey, D. J., Hydrodynamic interaction between gas bubbles in liquid, J. Fluid Mech., 77, 27-44 (1976) · Zbl 0355.76072 · doi:10.1017/S0022112076001110
[6] Felderhof, B. U., Virtual mass and drag in two-phase flow, J. Fluid Mech., 225, 177-196 (1991) · Zbl 0850.76757 · doi:10.1017/S002211209100201X
[7] Struminskii, V. V.; Gus’kov, O. B.; Korol’kov, G. A., Hydrodynamic interaction of particles in potential flow of an ideal fluid, Sov. Phys. Dokl., 31, 787-789 (1986) · Zbl 0618.76003
[8] Gus’kov, O. B.; Boshenyatov, B. V., Hydrodynamic interaction of spherical particles in an inviscid-fluid flow, Dokl. Phys., 56, 352-354 (2011) · doi:10.1134/S1028335811060073
[9] O. B. Gus’kov and B. V. Boshenyatov, “Interaction of phases and virtual mass of dispersed particles in potential flows of fluid,” Vestn. Nizhegorod. Univ. im. Lobachevskogo, No. 4-3, 740-741 (2011).
[10] Gus’kov, O. B., Virtual mass of a solid moving through a suspension of spherical particles, Dokl. Phys., 57, 29-32 (2012) · doi:10.1134/S1028335812010041
[11] Gus’kov, O. B., The virtual mass of a sphere in a suspension of spherical particles, J. Appl. Math. Mech., 76, 93-97 (2012) · Zbl 1272.76297 · doi:10.1016/j.jappmathmech.2012.03.007
[12] Gus’kov, O. B., The motion of a cluster of spherical particles in an ideal fluid, J. Appl. Math. Mech., 78, 126-131 (2014) · Zbl 1432.76268 · doi:10.1016/j.jappmathmech.2014.07.004
[13] O. B. Gus’kov, “The concept of a self-consistent field as applied to the dynamics of inviscid suspensions,” Proceedings of the 10th International Conference on Nonequilibrium Processes in Nozzles and Jets (NPNJ’2014), May 22-31,2014, Alushta (Mosk. Aviats. Inst., Moscow, 2014), pp. 87-89.
[14] Gus’kov, O. B., On the virtual mass of a rough sphere, J. Appl. Math. Mech., 81, 325-333 (2017) · Zbl 1440.74100 · doi:10.1016/j.jappmathmech.2017.12.006
[15] Zaripov, S. K.; Vanyunina, M. V.; Osiptsov, A. N.; Skvortsov, E. V., Calculation of concentration of aerosol particles around a slot sampler, Atm. Environ., 41, 4773-4780 (2007) · doi:10.1016/j.atmosenv.2007.03.009
[16] Wang, Shuyan; Sun, Jin; Yang, Qian; Zhao, Yueqi; Gao, Jinsen; Liu, Yang, Numerical simulation of flow behavior of particles in an inverse liquid-solid fluidized bed, Powder Technol., 261, 14-21 (2014) · doi:10.1016/j.powtec.2014.04.017
[17] Wang, Shuai; Lu, Huilin; Zhang, Qinghong; Liu, Guodong; Zhao, Feixiang; Sun, Liyan, Modeling of bubble-structure-dependent drag for bubbling fluidized beds, Ind. Eng. Chem. Res., 53, 15776-15785 (2014) · doi:10.1021/ie502412g
[18] Wang, Shuyan; Jiang, Xiaoxue; Wang, Ruichen; Wang, Xu; Yang, Shanwen; Zhao, Jian; Liu, Yang, Numerical simulation of flow behavior of particles in a liquid-solid stirred vessel with baffles, Adv. Powder Technol., 28, 1611-1624 (2017) · doi:10.1016/j.apt.2017.04.004
[19] Wang, Wen-rui; Li, Zhao; Zhang, Jia-ming; Li, Han-lin, Simulation study of particle-fluid two-phase coupling flow field and its influencing factors of crystallization process, Chem. Pap., 72, 3105-3117 (2018) · doi:10.1007/s11696-018-0537-0
[20] van Beek, P., A counterpart of Faxen’s formula in potential flow, Int. J. Multiphase Flow, 11, 873-879 (1985) · Zbl 0576.76022 · doi:10.1016/0301-9322(85)90030-8
[21] Batchelor, G. K., Sedimentation in a dilute dispersion of spheres, J. Fluid Mech., 52, 245-268 (1972) · Zbl 0252.76069 · doi:10.1017/S0022112072001399
[22] Beenakker, C. W. J.; Mazur, P., Is sedimentation container-shape dependent?, Phys. Fluids, 28, 3203-3206 (1985) · Zbl 0588.76163 · doi:10.1063/1.865367
[23] Gus’kov, O. B.; Zolotov, A. V., Sedimentation of a suspension of spherical particles in a cylinder, J. Appl. Math. Mech., 51, 745-748 (1987) · Zbl 0681.76104 · doi:10.1016/0021-8928(87)90135-3
[24] L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Nauka, Moscow, 1986; Butterworth-Heinemann, Oxford, 1987).
[25] Boshenyatov, B. V., The theory of electric and thermal conductivity in bubble gas-liquid media, Dokl. Phys., 59, 601-603 (2014) · doi:10.1134/S1028335814120088
[26] Boshenyatov, B. V., The contribution of interactions of spherical inclusions into electrical and thermal conductivity of composite materials, Compos. Mech. Comput. Appl. Int. J., 7, 95-104 (2016) · doi:10.1615/CompMechComputApplIntJ.v7.i2.10
[27] Boshenyatov, B. V., The role of particle interaction in the cluster model of heat conductivity of nanofluids, Tech. Phys. Lett., 44, 94-97 (2018) · doi:10.1134/S1063785018020049
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.