# zbMATH — the first resource for mathematics

Fractional-order Genocchi-Petrov-Galerkin method for solving time-space fractional Fokker-Planck equations arising from the physical phenomenon. (English) Zbl 1461.65244
Summary: In the current study, we present the fractional-order Genocchi-Petrov-Galerkin method to investigate the approximate solution of time-space fractional Fokker-Planck equations (FFPEs). In the proposed approach, due to fractional Genocchi functions (FGFs) and their operational matrices transform these equations into a system of algebraic equations. The operational matrices of fractional-order integration and derivative are obtained by utilizing Riemann-Liouville fractional integral operator and Caputo fractional derivative, respectively. The convergence analysis of the proposed technique is rigorously discussed. To illustrate the applicability of the error formulas, we present the process of obtaining results for some examples. These examples are carried out to confirm the effectiveness of the proposed method.
##### MSC:
 65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs 65M15 Error bounds for initial value and initial-boundary value problems involving PDEs 35R11 Fractional partial differential equations 35Q84 Fokker-Planck equations 65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
FODE
Full Text:
##### References:
 [1] Aminataei, A.; Vanani, SK, Numerical solution of fractional Fokker-Planck equation using the operational collocation method, Appl. Comput. Math., 12, 1, 33-43 (2013) · Zbl 1290.26003 [2] Araci, S., Acikgoz, M., Bagdasaryan, A., Sen, E.: The Legendre polynomials associated with Bernoulli, Euler, Hermite and Bernstein polynomials (2013). ArXiv preprint arXiv:1312.7838 [3] Bayad, A.; Kim, T., Identities for the Bernoulli, the Euler and the Genocchi numbers and polynomials, Adv. Stud. Contemp. Math., 20, 2, 247-53 (2010) · Zbl 1209.11025 [4] Chen, S.; Liu, F.; Zhuang, P.; Anh, V., Finite difference approximations for the fractional Fokker-Planck equation, Appl. Math. Model., 33, 256-273 (2009) · Zbl 1167.65419 [5] Dehghan, M., A computational study of the one-dimensional parabolic equation subject to nonclassical boundary specifications, Numer. Methods Partial Differ. Equ., 22, 1, 220-257 (2006) · Zbl 1084.65099 [6] Dehghan, M.; Tatari, M., The use of He’s variational iteration method for solving a Fokker-Planck equation, Phys. Scr., 74, 310-316 (2006) · Zbl 1108.82033 [7] Dehestani, H.; Ordokhani, Y.; Razzaghi, M., Fractional-order Legendre-Laguerre functions and their applications in fractional partial differential equations, Appl. Math. Comput., 336, 433-453 (2018) · Zbl 1427.35314 [8] Dehestani, H.; Ordokhani, Y.; Razzaghi, M., Application of the modified operational matrices in multiterm variable-order time-fractional partial differential equations, Math. Methods Appl. Sci., 42, 7296-7313 (2019) · Zbl 1435.65173 [9] Dehestani, H.; Ordokhani, Y.; Razzaghi, M., Hybrid functions for numerical solution of fractional Fredholm-Volterra functional integro-differential equations with proportional delays, Int. J. Numer. Model., 32, e2606 (2019) [10] Dehestani, H.; Ordokhani, Y.; Razzaghi, M., Fractional-order Bessel functions with various applications, Appl. Math., 64, 6, 637-662 (2019) · Zbl 07144731 [11] Dehestani, H.; Ordokhani, Y.; Razzaghi, M., Numerical technique for solving fractional generalized pantograph-delay differential equations by using fractional-order hybrid bessel functions, Int. J. Appl. Comput. Math., 69, 1-27 (2020) [12] Dehestani, H.; Ordokhani, Y.; Razzaghi, M., Pseudo-operational matrix method for the solution of variable-order fractional partial integro-differential equations, Eng. Comput. (2020) [13] Deng, W., Finite element method for the space and time fractional Fokker-Planck equation, SIAM J. Numer. Anal., 47, 204-226 (2008) · Zbl 1416.65344 [14] Firoozjaee, MA; Jafari, H.; Lia, A.; Baleanu, D., Numerical approach of Fokker-Planck equation with Caputo-Fabrizio fractional derivative using Ritz approximation, J. Comput. Appl. Math., 339, 367-373 (2018) · Zbl 1393.65029 [15] Hashemi, MS, Group analysis and exact solutions of the time fractional Fokker-Planck equation, Phys. A, 417, 141-149 (2015) · Zbl 1395.82186 [16] Heinsalu, E.; Patriarca, M.; Goychuk, I.; Schmid, G.; Hanggi, P., Fractional Fokker-Planck dynamics: numerical algorithm and simulations, Phys. Rev. E, 73, 1-9 (2006) [17] Heinsalu, E.; Patriarca, M.; Goychuk, I.; Hanggi, P., Fractional Fokker-Planck subdiffusion in alternating force fields, Phys. Rev. E, 79, 4, 041137 (2009) [18] Isah, A.; Phang, C., New operational matrix of derivative for solving non-linear fractional differential equations via Genocchi polynomials, J. King. Saud Univ. Sci., 31, 1, 1-7 (2019) [19] Jumarie, G., A Fokker-Planck equation of fractional order with respect to time, J. Math. Phys., 33, 3536-3542 (1992) · Zbl 0761.60071 [20] Khan, A.; Abdeljawad, T.; Gomez-Aguilar, JF; Khan, H., Dynamical study of fractional order mutualism parasitism food web module, Chaos Solitons Fractals, 134, 109685 (2020) [21] Khan, H.; Gomez-Aguilar, JF; Alkhazzan, A.; Khan, A., A fractional order HIV-TB coinfection model with nonsingular Mittag-Leffler Law, Math. Method Appl. Sci., 43, 6, 3786-3806 (2020) [22] Khan, A.; Gomez-Aguilar, JF; Khan, TS; Khan, H., Stability analysis and numerical solutions of fractional order HIV/AIDS model, Chaos Solitons Fractals, 122, 119-128 (2019) [23] Kreyszig, E., Introductory Functional Analysis with Applications (1978), New York: Wiley, New York · Zbl 0368.46014 [24] Lakestani, M.; Dehghan, M., Numerical solution of Fokker-Planck equation using the cubic B-spline scaling functions, Numer. Methods Partial Differ. Equ., 25, 2, 418-429 (2009) · Zbl 1159.65009 [25] Liang, J.; Ren, F.; Qiu, W.; Xiao, J., Exact solutions for nonlinear fractional anomalous diffusion equations, Phys. A, 385, 80-94 (2007) [26] Loh, JR; Phang, C.; Isah, A., New operational matrix via genocchi polynomials for solving Fredholm-Volterra fractional integro-differential equations, Adv. in Math. Phy., 2017, 12 (2017) · Zbl 1405.65171 [27] Metzler, R.; Jeon, JH; Cherstvy, AG; Barkai, E., Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking, Phys. Chem. Chem. Phys., 16, 44, 24128-24164 (2014) [28] Odibat, Z.; Momani, S., Numerical solution of Fokker-Planck equation with space- and time-fractional derivatives, Phys. Lett. A, 369, 5, 349-358 (2007) · Zbl 1209.65114 [29] Pinto, L.; Sousa, E., Numerical solution of a time-space fractional Fokker Planck equation with variable force field and diffusion, Commun. Nonlinear Sci. Numer. Simulat., 50, 211-228 (2017) [30] Prakash, A.; Kaur, H., Numerical solution for fractional model of Fokker-Planck equation by using q-HATM, Chaos Solitons Fractals, 105, 99-110 (2017) · Zbl 1380.35154 [31] Ray, SS; Gupta, AK, A two-dimensional Haar wavelet approach for the numerical simulations of time and space fractional Fokker-Planck equations in modelling of anomalous diffusion systems, J. Math. Chem., 52, 8, 2277-2293 (2014) · Zbl 1301.65111 [32] Risken, H., The Fokker-Planck Equation (1989), Berlin: Springer, Berlin · Zbl 0665.60084 [33] Rivlin, TJ, An Introduction to the Approximation of Functions (1981), New York: Dover Publications, New York [34] Shkilev, VP, Subdiffusion in a time-dependent force field, J. Exp. Theor. Phys., 114, 5, 830-835 (2012) [35] Saravanan, A.; Magesh, N., An efficient computational technique for solving the Fokker-Planck equation with space and time fractional derivatives, J. King. Saud Univ. Sci., 28, 160-166 (2016) [36] Sepehrian, B.; Radpoor, MK, Numerical solution of non-linear Fokker-Planck equation using finite differences method and the cubic spline functions, Appl. Math. Comput., 262, 187-190 (2015) · Zbl 1410.65402 [37] Sokolov, IM; Klafter, J., Field-induced dispersion in subdiffusion, Phys. Rev. Lett., 97, 14, 140602 (2006) [38] Tatari, M.; Dehghan, M.; Razzaghi, M., Application of the Adomian decomposition method for the Fokker-Planck equation, Math. Comput. Model., 45, 639-650 (2007) · Zbl 1165.65397 [39] Xie, J.; Yao, Z.; Gui, H.; Zhao, F.; Li, D., A two-dimensional Chebyshev wavelets approach for solving the Fokker-Planck equations of time and space fractional derivatives type with variable coefficients, Appl. Math. Comput., 332, 197-208 (2018) · Zbl 1427.65310 [40] Yang, Y.; Huang, Y.; Zhou, Y., Numerical solutions for solving time fractional Fokker-Planck equations based on spectral collocation methods, J. Comput. Appl. Math., 339, 389-404 (2018) · Zbl 1393.65037 [41] Yang, Q.; Liu, F.; Turner, I., Computationally efficient numerical methods for time and space fractional Fokker-Planck equations, Phys. Scr., T136, 014026 (2009) [42] Yildirim, A., Analytical approach to Fokker-Planck equation with space- and time-fractional derivatives by means of the homotopy perturbation method, J. King. Saud Univ., 22, 4, 257-264 (2010) [43] Zhuang, P.; Liu, F.; Anh, V.; Turner, I., Numerical treatment for the fractional Fokker-Planck equation, ANZIAM J., 48, 759-774 (2007) [44] Zhang, H.; Jiang, X.; Yang, X., A time-space spectral method for the time-space fractional Fokker-Planck equation and its inverse problem, Appl. Math. Comput., 320, 302-318 (2018) · Zbl 1427.65313
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.