×

Periodically spaced collinear cracks in a soft ferromagnetic material under a uniform magnetic field. (English) Zbl 1440.74141

Summary: This paper aims at a fundamental perspective of multiple cracks’ interaction on the fracture behavior of magnetoelastic materials. A theoretical study is performed on a soft ferromagnetic solid weakened by an array of periodic cracks under an in-plane magnetic loading. By using the conformal mapping technique and the analytic function boundary value theory, a rigorous analytical solution of the magnetic and stress fields is obtained, and the closed-form expressions for the field intensity factors are presented. Numerical examples of magnetically impermeable and permeable cracks are studied to reveal the relationship of the mode-I stress intensity factor with the period ratio of the cracks, the surrounding medium, and the applied magnetic loading. The analytical solution in this study can serve as a theoretical benchmark for the fracture problem of a magnetoelastic solid containing multiple defects.

MSC:

74F15 Electromagnetic effects in solid mechanics
74A45 Theories of fracture and damage
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] O’Handley, RC, Modern Magnetic Materials: Principles and Applications (2000), New York: Wiley, New York
[2] Pao, YH; Yeh, CS, A linear theory for soft ferromagnetic elastic solids, Int. J. Eng. Sci., 11, 415-436 (1973) · Zbl 0252.73070 · doi:10.1016/0020-7225(73)90059-1
[3] Vazquez, M.; Hernando, A., A soft magnetic wire for sensor applications, J. Phys. D Appl. Phys., 29, 939-949 (1996) · doi:10.1088/0022-3727/29/4/001
[4] Ludwig, A.; Tewes, M.; Glasmachers, S.; Löhndorf, M.; Quandt, E., High-frequency magnetoelastic materials for remote-interrogated stress sensors, J. Magn. Magn. Mater., 242, 1126-1131 (2002) · doi:10.1016/S0304-8853(01)00979-9
[5] Gibbs, MR; Hill, EW; Wright, PJ, Magnetic materials for MEMS applications, J. Phys. D Appl. Phys., 37, R237-R244 (2004) · doi:10.1088/0022-3727/37/22/R01
[6] Ujihara, M.; Carman, GP; Lee, DG, Thermal energy harvesting device using ferromagnetic materials, Appl. Phys. Lett., 91, 093508 (2007) · doi:10.1063/1.2775096
[7] Song, ZF; Sih, GC, Crack initiation behavior in magnetoelectroelastic composite under in-plane deformation, Theor. Appl. Fract. Mech., 39, 189-207 (2003) · doi:10.1016/S0167-8442(03)00002-8
[8] Fang, DN; Wan, YP; Soh, AK, Magnetoelastic fracture of soft ferromagnetic materials, Theor. Appl. Fract. Mech., 42, 317-334 (2004) · doi:10.1016/j.tafmec.2004.09.006
[9] Bagdasarian, GY; Hasanian, DJ, Magnetoelastic interaction between a soft ferromagnetic elastic half-plane with a crack and a constant magnetic field, Int. J. Solids Struct., 37, 5371-5383 (2000) · Zbl 0962.74018 · doi:10.1016/S0020-7683(99)00219-X
[10] Lin, CB; Yeh, CS, The magnetoelastic problem of a crack in a soft ferromagnetic solid, Int. J. Solids Struct., 39, 1-7 (2002) · Zbl 1090.74572 · doi:10.1016/S0020-7683(01)00176-7
[11] Lin, CB, The influence of magnetic field permeability on crack problem in plane magnetoelasticity, Eng. Fract. Mech., 79, 167-179 (2012) · doi:10.1016/j.engfracmech.2011.10.011
[12] Liang, W.; Fang, D.; Shen, Y.; Soh, AK, Nonlinear magnetoelastic coupling effects in a soft ferromagnetic material with a crack, Int. J. Solids Struct., 39, 3997-4011 (2002) · Zbl 1040.74017 · doi:10.1016/S0020-7683(02)00266-4
[13] Shi, Y.; Yu, H.; Wang, J., An I-integral method for the crack-tip intensity factor in ferromagnetic materials with domain switching, Acta Mech., 230, 1427-1439 (2019) · Zbl 1428.74230 · doi:10.1007/s00707-017-2016-z
[14] Lin, CB; Chen, SC; Lee, JL, Explicit solutions of magnetoelastic fields in a soft ferromagnetic solid with curvilinear cracks, Eng. Fract. Mech., 76, 1846-1865 (2009) · doi:10.1016/j.engfracmech.2009.04.017
[15] Hasebe, N.; Omatsu, N., Analysis of a kinked crack in soft ferromagnetic and paramagnetic elastic materials subjected to uniform magnetic field intensity, Eng. Fract. Mech., 184, 141-153 (2017) · doi:10.1016/j.engfracmech.2017.08.032
[16] Lin, CB; Lin, HM, The magnetoelastic problem of cracks in bonded dissimilar materials, Int. J. Solid Struct., 39, 2807-2826 (2002) · Zbl 1087.74613 · doi:10.1016/S0020-7683(02)00153-1
[17] Zhao, SX; Lee, KY, Interfacial crack problem in layered soft ferromagnetic materials in uniform magnetic field, Mech. Res. Commun., 34, 19-30 (2007) · Zbl 1192.74333 · doi:10.1016/j.mechrescom.2006.06.001
[18] Singh, IV; Mishra, BK; Pant, M., An enrichment based new criterion for the simulation of multiple interacting cracks using element free Galerkin method, Int. J. Fract., 167, 157-171 (2011) · Zbl 1283.74099 · doi:10.1007/s10704-010-9536-z
[19] Chen, YZ; Lin, XY; Wang, ZX, Solution of periodic group crack problems by using the Fredholm integral equation approach, Acta Mech., 178, 41-51 (2005) · Zbl 1079.74055 · doi:10.1007/s00707-005-0233-3
[20] Liang, W.; Shen, YP; Zhao, M., Magnetoelastic formulation of soft ferromagnetic elastic problems with collinear cracks: energy density fracture criterion, Theor. Appl. Fract. Mech., 34, 49-60 (2000) · doi:10.1016/S0167-8442(00)00023-9
[21] Hoffmann, TJ; Chudzicka-Adamczak, M., The Maxwell stress tensor for magnetoelastic materials, Int. J. Eng. Sci., 47, 735-739 (2009) · doi:10.1016/j.ijengsci.2008.12.004
[22] Chang, C.; Gao, CF; Shi, Y., Collinear crack problems in a soft ferromagnetic solid, Int. J. Appl. Electromagn., 40, 113-132 (2012) · doi:10.3233/JAE-2012-1433
[23] Li, YS, Multiple collinear Griffith cracks in a one-dimensional hexagonal quasicrystalline layer, Acta Mech., 227, 3671-3686 (2016) · Zbl 1380.74108 · doi:10.1007/s00707-016-1688-0
[24] Chen, J., Anti-plane problem of periodic cracks in a functionally graded coating-substrate structure, Arch. Appl. Mech., 75, 138-152 (2006) · Zbl 1119.74544 · doi:10.1007/s00419-005-0425-2
[25] Viun, O.; Labesse-Jied, F.; Moutou-Pitti, R.; Loboda, V.; Lapusta, Y., Periodic limited permeable cracks in magneto-electro-elastic media, Acta Mech., 226, 2225-2233 (2015) · Zbl 1317.74083 · doi:10.1007/s00707-014-1296-9
[26] Ding, SH; Li, X., Periodic cracks in a functionally graded piezoelectric layer bonded to a piezoelectric half-plane, Theor. Appl. Fract. Mech., 49, 313-320 (2008) · doi:10.1016/j.tafmec.2008.02.002
[27] Dai, M.; Schiavone, P.; Gao, CF, Periodic cracks in an infinite electrostrictive plane under the influence of a uniform remote electric field, Eng. Fract. Mech., 157, 1-10 (2016) · doi:10.1016/j.engfracmech.2016.02.026
[28] Muskhelishvili, NI, Some Basic Problems of the Mathematical Theory of Elasticity (1953), Groningen: Noordhoff, Groningen · Zbl 0052.41402
[29] Dai, M., On the numerical implementation of special solutions to the homogeneous Riemann-Hilbert problem in two-dimensional elasticity, Acta Mech., 230, 6, 2105-2110 (2019) · Zbl 1428.74190 · doi:10.1007/s00707-019-02397-9
[30] Hills, DA; Kelly, PA; Dai, DN; Korsunsky, AM, Solution of Crack Problems: The Distributed Dislocation Technique (2013), Berlin: Springer, Berlin
[31] Zhao, MH; Zhang, QY; Fan, CY; Jia, JN, Semi-permeable crack analysis in a 2D magnetoelectroelastic medium based on the EMPS model, Mech. Res. Commun., 55, 30-39 (2014) · doi:10.1016/j.mechrescom.2013.10.012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.