zbMATH — the first resource for mathematics

On the motivic commutative ring spectrum \(\mathbf{BO}\). (English) Zbl 1428.14011
St. Petersbg. Math. J. 30, No. 6, 933-972 (2019) and Algebra Anal. 30, No. 6, 43-96 (2018).
Let \({\mathrm{\mathcal{S}m}}/S\) be the category of smooth \(S\)-schemes of finite type. \(S\) is assumed to be regular, Noetherian separated of finite Krull dimension and such that \(\frac{1}{2}\in {\Gamma}(S,\mathcal{O}_S)\). Let \({\mathrm{\mathcal{S}m\mathcal{O}p}}/S\) be the category of pairs \((X,U)\) in \({\mathrm{\mathcal{S}m}}/S\) with the usual morphisms. The authors construct an algebraic commutative ring \(T\)-spectrum \(\mathbf{BO}\) with the following properties:
\(\mathbf{BO}\) is stably fibrant,
it is \((8,4)\)-periodic,
on \({\mathrm{\mathcal{S}m\mathcal{O}p}}/S\) the resulting cohomology theory \((X,U)\rightarrow {\mathbf{BO}}^{p,q}(X_{+}/U_{+})\) is canonically isomorphic to the Schlichting’s Hermitian \(K\)-theory \((X,U)\rightarrow KO^{[q]}_{2q-p}(X,U)\)
The authors also equip \(\mathbf{BO}\) with the structure of a compatible monoid in motivic stable homotopy category. They show that if \(S={\mathrm{Spec}}{\mathbb Z}[\frac{1}{2}]\) this monoidal structure and the induced ring structure on the \(\mathbf{BO}\)-cohomology ring are compatible with the products: \[K_{0}^{[2m]}(X)\times K_{0}^{[2n]}(Y)\rightarrow K_{0}^{[2m+2n]}(X\times Y)\] induced on Grothendieck-Witt groups by the tensor product of symmetric chain complexes.

14C15 (Equivariant) Chow groups and rings; motives
Full Text: DOI
[1] Adams:1974bk J. F. Adams, Stable homotopy and generalized homology, Univ. Chicago Lecture Notes, Univ. Chicago Press, Chicago, 1974. · Zbl 0309.55016
[2] Atiyah:1971zr M. F. Atiyah, Riemann surfaces and spin structures, Ann. Sci. \'Ecole Norm. Sup. (4)  4 (1971), 47-62. · Zbl 0212.56402
[3] Balmer:2000hb P. Balmer, Triangular Witt groups. I. The \(12\)-term localization exact sequence, \(K\)-Theory  19 (2000), no. 4, 311-363. · Zbl 0953.18003
[4] Balmer:2002rp P. Balmer and C. Walter, A Gersten-Witt spectral sequence for regular schemes, Ann. Sci. \'Ecole Norm. Sup. (4)  35 (2002), no. 1, 127-152. · Zbl 1012.19003
[5] Barge:2008it J. Barge and J. Lannes, Suites de Sturm, indice de Maslov et p\'eriodicit\'e de Bott, Progress Math., vol. 267, Birkh\"auser Verlag, Basel, 2008.
[6] CF:1966bk P. E. Conner and E. E. Floyd, The relation of cobordism to \(K\)-theory. Lecture Notes in Math., vol. 28, Springer-Verlag, Berlin, 1966. · Zbl 0161.42802
[7] Friedlander:2002aa E. M. Friedlander and A. Suslin, The spectral sequence relating algebraic \(K\)-theory to motivic cohomology, Ann. Sci. \'Ecole Norm. Sup. (4)  35 (2002), no. 6, 773-875. · Zbl 1047.14011
[8] Gille:2007hb S. Gille, The general d\'evissage theorem for Witt groups of schemes, Arch. Math. (Basel)  88 (2007), no. 4, 333-343. · Zbl 1175.19001
[9] Gille:2003ad S. Gille and A. Nenashev, Pairings in triangular Witt theory, J. Algebra  261 (2003), no. 2, 292-309. · Zbl 1016.18007
[10] Hornbostel:2005ph J. Hornbostel, \(A\sp 1\)-representability of Hermitian \(K\)-theory and Witt groups, Topology  44 (2005), no. 3, 661-687. · Zbl 1078.19004
[11] Jardine:2000aa F. Jardine, Motivic symmetric spectra, Doc. Math.  5 (2000), 445-552. · Zbl 0969.19004
[12] Karoubi:1975aa M. Karoubi, Localisation de formes quadratiques. I, Ann. Sci. \'Ecole Norm. Sup. (4)  7 (1975), 359-403. · Zbl 0325.18011
[13] Karoubi:1980aa M. Karoubi, Le th\'eor\`“eme fondamental de la \(K\)-th\'”eorie hermitienne, Ann. of Math.(2)  112 (1980), no. 2, 259-282. · Zbl 0483.18008
[14] Morel:1999ab F. Morel and V. Voevodsky, \( \mathbfA^1\)-homotopy theory of schemes, Inst. Hautes \'Etudes Sci. Publ. Math.  90 (1999), 45-143.
[15] Nenashev:2007rm A. Nenashev, Gysin maps in Balmer-Witt theory, J. Pure Appl. Algebra  211 (2007), no. 1, 203-221. · Zbl 1140.11024
[16] Panin:2003rz I. Panin, Oriented cohomology theories of algebraic varieties, Special issue in honor of Hyman Bass on his seventieth birthday. Pt. III, \(K\)-Theory  30 (2003), no. 3, 265-314. · Zbl 1047.19001
[17] Panin:2009rz I. Panin, Oriented cohomology theories of algebraic varieties. \rm II (after I. Panin and A. Smirnov\/), Homology Homotopy Appl.  11 (2009), no. 1, 349-405. · Zbl 1169.14016
[18] Panin:2009aa I. Panin, K. Pimenov and O. R\`“ondigs, On Voevodsky”s algebraic \(K\)-theory spectrum, Algebraic topology, vol. 4, Abel Symp., Springer, Berlin, 2009, pp. 279-330. · Zbl 1179.14022
[19] Panin:2010fk I. Panin and C. Walter, Quaternionic Grassmannians and Borel classes in algebraic geometry, Preprint, 2018.
[20] Panin:2010fk2 I. Panin and C. Walter, On the algebraic cobordism spectra, MSL and MSp Preprint, 2018. · Zbl 1442.19012
[21] Panin:2010fk3 I. Panin and C. Walter, On the relation of symplectic algebraic cobordism to Hermitian \(K\)-theory, Preprint, 2018. · Zbl 1442.19012
[22] Schlichting:2004aa M. Schlichting, Hermitian \(K\)-theory on a theorem of Giffen, \(K\)-Theory  32 (2004), no. 3, 253-267. · Zbl 1070.19006
[23] Schlichting:2006aa M. Schlichting, Hermitian \(K\)-theory, derived equivalences and Karoubi’s fundamental theorem, Draft, 2006. · Zbl 1360.19008
[24] Schlichting:2010uq M. Schlichting, The Mayer-Vietoris principle for Grothendieck-Witt groups of schemes, Invent. Math.  179 (2010), no. 2, 349-433. · Zbl 1193.19005
[25] Voevodsky:1998kx V. Voevodsky, \( \mathbfA\sp 1\)-homotopy theory, Proc. Intern. Congress Math., Vol. I (Berlin, 1998), Doc. Math.  1998, Extra vol. I, 579-564. · Zbl 0907.19002
[26] Voevodsky:2007aa V. Voevodsky, O. R\`“ondigs, and P. A. stvr, Voevodsky”s Nordfjordeid lectures: Motivic homotopy theory, Motivic homotopy theory, Universitext, Springer, Berlin, 2007, pp. 147-221.
[27] Walter:2010ab C. Walter, The formal group law for Borel classes in Hermitian \(K\)-theory, 2010 (in preparation).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.