×

Helly-type problems. (English) Zbl 1503.52009

The paper presents various refinements and generalizations of the theorems of Helly, Radon, Carathéodory, and Tverberg, exploring the connections of these fundamental results of convex geometry with topology. Each topic is accompanied by known conjectures and new open problems.

MSC:

52A35 Helly-type theorems and geometric transversal theory
52A20 Convex sets in \(n\) dimensions (including convex hypersurfaces)
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Aharoni, Ron, The intersection of a matroid and a simplicial complex, Trans. Amer. Math. Soc., 4895-4917 (2006) · Zbl 1108.05023 · doi:10.1090/S0002-9947-06-03833-5
[2] Aharoni, Ron, Rainbow matchings in \(r\)-partite \(r\)-graphs, Electron. J. Combin., Research Paper 119, 9 pp. (2009) · Zbl 1186.05118
[3] Almendra-Hern\'andez, V. H., Quantitative Helly-type theorems via sparse approximation (2021)
[4] Alon, Noga, Point selections and weak \(\epsilon \)-nets for convex hulls, Combin. Probab. Comput., 189-200 (1992) · Zbl 0797.52004 · doi:10.1017/S0963548300000225
[5] Alon, N., Bounding the piercing number, Discrete Comput. Geom., 245-256 (1995) · Zbl 0826.52006 · doi:10.1007/BF02574042
[6] Alon, Noga, Transversal numbers for hypergraphs arising in geometry, Adv. in Appl. Math., 79-101 (2002) · Zbl 1027.52003 · doi:10.1016/S0196-8858(02)00003-9
[7] Alon, Noga, Piercing convex sets, Bull. Amer. Math. Soc. (N.S.), 252-256 (1992) · Zbl 0758.52006 · doi:10.1090/S0273-0979-1992-00304-X
[8] Alon, Noga, Piercing convex sets and the Hadwiger-Debrunner \((p,q)\)-problem, Adv. Math., 103-112 (1992) · Zbl 0768.52001 · doi:10.1016/0001-8708(92)90052-M
[9] Alon, Noga, Crossing patterns of semi-algebraic sets, J. Combin. Theory Ser. A, 310-326 (2005) · Zbl 1099.14048 · doi:10.1016/j.jcta.2004.12.008
[10] Amenta, N., Helly-type theorems and generalized linear programming, Discrete Comput. Geom., 241-261 (1994) · Zbl 0819.90056 · doi:10.1007/BF02574379
[11] Arocha, Jorge L., Very colorful theorems, Discrete Comput. Geom., 142-154 (2009) · Zbl 1173.52002 · doi:10.1007/s00454-009-9180-4
[12] Bajm\'{o}czy, E. G., On a common generalization of Borsuk’s and Radon’s theorem, Acta Math. Acad. Sci. Hungar., 347-350 (1980) (1979) · Zbl 0446.52010 · doi:10.1007/BF01896131
[13] B\'{a}r\'{a}ny, Imre, A generalization of Carath\'{e}odory’s theorem, Discrete Math., 141-152 (1982) · Zbl 0492.52005 · doi:10.1016/0012-365X(82)90115-7
[14] B{\'a}r{\'a}ny, I., Combinatorial convexity, University Lecture Series, American Mathematical Society, Providence, RI · Zbl 1528.52001
[15] B{\'a}r{\'a}ny, I., {Pairwise intersecting convex bodies and cylinders in \(\mathbb{R}^3\)} (2021) · Zbl 1513.52010
[16] B\'{a}r\'{a}ny, I., On the number of halving planes, Combinatorica, 175-183 (1990) · Zbl 0718.52009 · doi:10.1007/BF02123008
[17] B\'{a}r\'{a}ny, Imre, A Journey through Discrete Mathematics. A Tverberg type theorem for matroids, 115-121 (2017), Springer, Cham · Zbl 1387.05036
[18] B{\'a}r{\'a}ny, I., {Universal sets of lines and \(k\)-flats}, in preparation, (2021)
[19] B\'{a}r\'{a}ny, Imre, Quantitative Helly-type theorems, Proc. Amer. Math. Soc., 109-114 (1982) · Zbl 0511.52005 · doi:10.2307/2044407
[20] B\'{a}r\'{a}ny, I., A colored version of Tverberg’s theorem, J. London Math. Soc. (2), 314-320 (1992) · Zbl 0769.52008 · doi:10.1112/jlms/s2-45.2.314
[21] B\'{a}r\'{a}ny, Imre, A fractional Helly theorem for convex lattice sets, Adv. Math., 227-235 (2003) · Zbl 1028.52003 · doi:10.1016/S0001-8708(02)00037-3
[22] B\'{a}r\'{a}ny, Imre, Curves in \(\mathbb{R}^d\) intersecting every hyperplane at most \(d+1\) times, J. Eur. Math. Soc. (JEMS), 2469-2482 (2016) · Zbl 1351.05219 · doi:10.4171/JEMS/645
[23] B\'{a}r\'{a}ny, Imre, Pach’s selection theorem does not admit a topological extension, Discrete Comput. Geom., 420-429 (2018) · Zbl 1401.52011 · doi:10.1007/s00454-018-9998-8
[24] B{\'a}r{\'a}ny, I., {The Carath\'eodory number for the \(k\)-core}, Combinatorica, 185\ndash 194 pp. (1990) · Zbl 0721.52006
[25] B\'{a}r\'{a}ny, I., On a topological generalization of a theorem of Tverberg, J. London Math. Soc. (2), 158-164 (1981) · Zbl 0453.55003 · doi:10.1112/jlms/s2-23.1.158
[26] Bj\"{o}rner, Anders, Oriented matroids, Encyclopedia of Mathematics and its Applications, xii+516 pp. (1993), Cambridge University Press, Cambridge · Zbl 0773.52001
[27] Blagojevi\'{c}, Pavle V. M., Barycenters of polytope skeleta and counterexamples to the topological Tverberg conjecture, via constraints, J. Eur. Math. Soc. (JEMS), 2107-2116 (2019) · Zbl 1428.52008 · doi:10.4171/JEMS/881
[28] Blagojevi\'{c}, Pavle V. M., Optimal bounds for the colored Tverberg problem, J. Eur. Math. Soc. (JEMS), 739-754 (2015) · Zbl 1327.52009 · doi:10.4171/JEMS/516
[29] Boros, E., The number of triangles covering the center of an \(n\)-set, Geom. Dedicata, 69-77 (1984) · Zbl 0595.52002 · doi:10.1007/BF00181519
[30] Brazitikos, Silouanos, Quantitative Helly-type theorem for the diameter of convex sets, Discrete Comput. Geom., 494-505 (2017) · Zbl 1368.52001 · doi:10.1007/s00454-016-9840-0
[31] Bukh, B., Radon partitions in convexity spaces (2010)
[32] Bukh, Boris, On a topological version of Pach’s overlap theorem, Bull. Lond. Math. Soc., 275-282 (2020) · Zbl 1442.05240 · doi:10.1112/blms.12302
[33] Bukh, Boris, Classifying unavoidable Tverberg partitions, J. Comput. Geom., 174-205 (2017) · Zbl 1397.52011
[34] Bukh, Boris, Lower bounds for weak epsilon-nets and stair-convexity, Israel J. Math., 199-208 (2011) · Zbl 1222.68395 · doi:10.1007/s11856-011-0029-1
[35] Bulavka, A., {Optimal bounds for the colorful fractional Helly theorem} (2020)
[36] Carath\'{e}odory, C., \"{U}ber den Variabilit\"{a}tsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen, Math. Ann., 95-115 (1907) · JFM 38.0448.01 · doi:10.1007/BF01449883
[37] Chow, T., Rota’s basis conjecture: Polymath 12 (2017)
[38] Chudnovsky, Maria, Proof of the Kalai-Meshulam conjecture, Israel J. Math., 639-661 (2020) · Zbl 1450.05024 · doi:10.1007/s11856-020-2034-8
[39] Conlon, David, Ramsey-type results for semi-algebraic relations, Trans. Amer. Math. Soc., 5043-5065 (2014) · Zbl 1306.14027 · doi:10.1090/S0002-9947-2014-06179-5
[40] Dam\'{a}sdi, G\'{a}bor, Colorful Helly-type theorems for the volume of intersections of convex bodies, J. Combin. Theory Ser. A, Paper No. 105361, 11 pp. (2021) · Zbl 1456.52008 · doi:10.1016/j.jcta.2020.105361
[41] Danzer, Ludwig, Proc. Sympos. Pure Math., Vol. VII. Helly’s theorem and its relatives, 101-180 (1963), Amer. Math. Soc., Providence, R.I. · Zbl 0132.17401
[42] De Loera, Jes\'{u}s A., The discrete yet ubiquitous theorems of Carath\'{e}odory, Helly, Sperner, Tucker, and Tverberg, Bull. Amer. Math. Soc. (N.S.), 415-511 (2019) · Zbl 1460.52010 · doi:10.1090/bull/1653
[43] Debrunner, H. E., Helly type theorems derived from basic singular homology, Amer. Math. Monthly, 375-380 (1970) · Zbl 0191.54903 · doi:10.2307/2316144
[44] Dhandapani, Raghavan, Interval sequences and the combinatorial encoding of planar families of convex sets, Rev. Roumaine Math. Pures Appl., 537-553 (2005) · Zbl 1108.52007
[45] Dillon, Travis, A M\'{e}lange of diameter Helly-type theorems, SIAM J. Discrete Math., 1615-1627 (2021) · Zbl 1469.52006 · doi:10.1137/20M1365119
[46] Doignon, Jean-Paul, Convexity in cristallographical lattices, J. Geom., 71-85 (1973) · Zbl 0245.52004 · doi:10.1007/BF01949705
[47] Eckhoff, J\"{u}rgen, Contributions to geometry. Radon’s theorem revisited, 164-185 (1978), Birkh\"{a}user, Basel-Boston, Mass. · Zbl 0445.52009
[48] Eckhoff, J\"{u}rgen, An upper-bound theorem for families of convex sets, Geom. Dedicata, 217-227 (1985) · Zbl 0588.52012 · doi:10.1007/BF00181472
[49] Eckhoff, J\"{u}rgen, Intersection properties of boxes. I. An upper-bound theorem, Israel J. Math., 283-301 (1988) · Zbl 0653.52003 · doi:10.1007/BF02783298
[50] Eckhoff, J\"{u}rgen, Intersection properties of boxes. II. Extremal families, Israel J. Math., 129-149 (1991) · Zbl 0747.52006 · doi:10.1007/BF02772945
[51] Eckhoff, J\"{u}rgen, Handbook of convex geometry, Vol. A, B. Helly, Radon, and Carath\'{e}odory type theorems, 389-448 (1993), North-Holland, Amsterdam · Zbl 0791.52009
[52] Eckhoff, J\"{u}rgen, The partition conjecture, Discrete Math., 61-78 (2000) · Zbl 0971.52008 · doi:10.1016/S0012-365X(99)00386-6
[53] Eckhoff, J\"{u}rgen, Discrete and Computational Geometry. A survey of the Hadwiger-Debrunner \((p,q)\)-problem, Algorithms Combin., 347-377 (2003), Springer, Berlin · Zbl 1084.52002 · doi:10.1007/978-3-642-55566-4\_16
[54] Eckhoff, J\"{u}rgen, Morris’s pigeonhole principle and the Helly theorem for unions of convex sets, Bull. Lond. Math. Soc., 577-588 (2009) · Zbl 1181.52011 · doi:10.1112/blms/bdp024
[55] Fox, Jacob, Overlap properties of geometric expanders, J. Reine Angew. Math., 49-83 (2012) · Zbl 1306.05171 · doi:10.1515/crelle.2011.157
[56] Fox, Jacob, Intersection patterns of curves, J. Lond. Math. Soc. (2), 389-406 (2011) · Zbl 1238.05269 · doi:10.1112/jlms/jdq087
[57] Frick, F., {Counterexamples to the topological Tverberg conjecture}, Oberwolfach Reports, 318\ndash 321 pp. (2015)
[58] Frick, F., {The topological Tverberg beyond prime powers} (2020)
[59] Gao, Jie, Analysis of incomplete data and an intrinsic-dimension Helly theorem, Discrete Comput. Geom., 537-560 (2008) · Zbl 1192.52008 · doi:10.1007/s00454-008-9107-5
[60] Goaoc, X., {Bounding Helly numbers via Betti numbers}, Journey through Discrete Mathematics. A Tribute to Ji\v{r}\'{\i } Matou\v{s}ek, 407\ndash 447 pp. (2017), Springer, Berlin · Zbl 1390.52012
[61] Goodman, J. E., Allowable sequences and order types in discrete and computational geometry, New Trends in Discrete and Computational Geometry, 103\ndash 134 pp. (1985), Springer, Berlin · Zbl 0809.52026
[62] Goodman, Jacob E., New Trends in Discrete and Computational Geometry. Geometric transversal theory, Algorithms Combin., 163-198 (1993), Springer, Berlin · Zbl 0792.52001 · doi:10.1007/978-3-642-58043-7\_8
[63] Gromov, Mikhail, Singularities, expanders and topology of maps. Part 2: From combinatorics to topology via algebraic isoperimetry, Geom. Funct. Anal., 416-526 (2010) · Zbl 1251.05039 · doi:10.1007/s00039-010-0073-8
[64] Gr\"{u}nbaum, Branko, On components in some families of sets, Proc. Amer. Math. Soc., 607-613 (1961) · Zbl 0106.01001 · doi:10.2307/2034254
[65] Hadwiger, H., \"{U}ber eine Variante zum Hellyschen Satz, Arch. Math. (Basel), 309-313 (1957) · Zbl 0080.15404 · doi:10.1007/BF01898794
[66] Hell, Stephan, On the number of Tverberg partitions in the prime power case, European J. Combin., 347-355 (2007) · Zbl 1121.05007 · doi:10.1016/j.ejc.2005.06.005
[67] Helly, E., \"{U}ber {M}engen konvexer {K}\"orper mit gemeinschaftlichen {P}unkten, Jahresberichte der Deutschen Math.-Verein., 175\ndash 176 pp. (1923) · JFM 49.0534.02
[68] Helly, Eduard, \"{U}ber Systeme von abgeschlossenen Mengen mit gemeinschaftlichen Punkten, Monatsh. Math. Phys., 281-302 (1930) · JFM 56.0499.03 · doi:10.1007/BF01696777
[69] Holmsen, Andreas F., Geometry-Intuitive, Discrete, and Convex. Geometric transversal theory: \(T(3)\)-families in the plane, Bolyai Soc. Math. Stud., 187-203 (2013), J\'{a}nos Bolyai Math. Soc., Budapest · Zbl 1359.52003 · doi:10.1007/978-3-642-41498-5\_7
[70] Ivanov, G., A quantitative Helly-type theorem: containment in a homothet (2021) · Zbl 1486.52014
[71] Holmsen, Andreas F., Radon numbers and the fractional Helly theorem, Israel J. Math., 433-447 (2021) · Zbl 1469.52007 · doi:10.1007/s11856-021-2102-8
[72] Kalai, Gil, Characterization of \(f\)-vectors of families of convex sets in \({\mathbf{R}}^d\). I. Necessity of Eckhoff’s conditions, Israel J. Math., 175-195 (1984) · Zbl 0572.52006 · doi:10.1007/BF02761163
[73] Kalai, Gil, Intersection patterns of convex sets, Israel J. Math., 161-174 (1984) · Zbl 0557.52005 · doi:10.1007/BF02761162
[74] Kalai, Gil, Characterization of \(f\)-vectors of families of convex sets in \({\mathbf{R}}^d\). II. Sufficiency of Eckhoff’s conditions, J. Combin. Theory Ser. A, 167-188 (1986) · Zbl 0599.52003 · doi:10.1016/0097-3165(86)90079-8
[75] Kalai, Gil, Proceedings of the International Congress of Mathematicians, Vol. 1, 2. Combinatorics and convexity, 1363-1374 (1994), Birkh\"{a}user, Basel · Zbl 0843.52002
[76] Kalai, G., Combinatorics with a geometric flavor, Visions in Mathematics (N. Alon, J. Bourgain, M. Gromov, and V. Milman, eds.), 742\ndash 791 pp. (2000), Birkh\"auser, Basel · Zbl 0989.05001
[77] Kalai, Gil, Computational Commutative Algebra and Combinatorics. Algebraic shifting, Adv. Stud. Pure Math., 121-163 (1999), Math. Soc. Japan, Tokyo · Zbl 1034.57021 · doi:10.2969/aspm/03310121
[78] Kalai, G., { Combinatorial and topological aspects of Helly type theorems} (2010)
[79] Kalai, Gil, A topological colorful Helly theorem, Adv. Math., 305-311 (2005) · Zbl 1064.52008 · doi:10.1016/j.aim.2004.03.009
[80] Kalai, Gil, Leray numbers of projections and a topological Helly-type theorem, J. Topol., 551-556 (2008) · Zbl 1148.55014 · doi:10.1112/jtopol/jtn010
[81] Katchalski, Meir, The dimension of intersections of convex sets, Israel J. Math., 465-470 (1971) · Zbl 0226.52002 · doi:10.1007/BF02771734
[82] Katchalski, M., Reconstructing dimensions of intersections of convex sets, Aequationes Math., 249-254 (1978) · Zbl 0408.52001 · doi:10.1007/BF01818564
[83] Katchalski, M., A problem of geometry in \({\mathbf{R}}^n \), Proc. Amer. Math. Soc., 284-288 (1979) · Zbl 0418.52013 · doi:10.2307/2042758
[84] Keller, Chaya, On piercing numbers of families satisfying the \((p,q)_r\) property, Comput. Geom., 11-18 (2018) · Zbl 1448.52007 · doi:10.1016/j.comgeo.2018.02.001
[85] Keller, Chaya, From a \((p,2)\)-theorem to a tight \((p,q)\)-theorem, Discrete Comput. Geom., 821-847 (2020) · Zbl 1441.52007 · doi:10.1007/s00454-018-0048-3
[86] Keller, Chaya, Improved bounds on the Hadwiger-Debrunner numbers, Israel J. Math., 925-945 (2018) · Zbl 1390.05235 · doi:10.1007/s11856-018-1685-1
[87] Kim, Minki, A note on the colorful fractional Helly theorem, Discrete Math., 3167-3170 (2017) · Zbl 1362.52003 · doi:10.1016/j.disc.2016.07.001
[88] Kleitman, Daniel J., Convex sets in the plane with three of every four meeting, Combinatorica, 221-232 (2001) · Zbl 0981.52001 · doi:10.1007/s004930100020
[89] Larman, D. G., Helly type properties of unions of convex sets, Mathematika, 53-59 (1968) · Zbl 0157.52502 · doi:10.1112/S0025579300002370
[90] Larman, D. G., On sets projectively equivalent to the vertices of a convex polytope, Bull. London Math. Soc., 6-12 (1972) · Zbl 0248.52010 · doi:10.1112/blms/4.1.6
[91] Larman, David, A Ramsey-type result for convex sets, Bull. London Math. Soc., 132-136 (1994) · Zbl 0809.05090 · doi:10.1112/blms/26.2.132
[92] Lekkerkerker, C. G., Representation of a finite graph by a set of intervals on the real line, Fund. Math., 45-64 (1962/63) · Zbl 0105.17501 · doi:10.4064/fm-51-1-45-64
[93] Mabillard, Isaac, Computational Geometry (SoCG’14). Eliminating Tverberg points, I. An analogue of the Whitney trick, 171-180 (2014), ACM, New York · Zbl 1397.57042
[94] Mart\'{\i }nez-Sandoval, Leonardo, Further consequences of the colorful Helly hypothesis, Discrete Comput. Geom., 848-866 (2020) · Zbl 1472.52011 · doi:10.1007/s00454-019-00085-y
[95] Matou\v{s}ek, J., A Helly-type theorem for unions of convex sets, Discrete Comput. Geom., 1-12 (1997) · Zbl 0889.52009 · doi:10.1007/PL00009305
[96] Matou\v{s}ek, Ji\v{r}\'{\i }, Bounded VC-dimension implies a fractional Helly theorem, Discrete Comput. Geom., 251-255 (2004) · Zbl 1059.52012 · doi:10.1007/s00454-003-2859-z
[97] McGinnis, D., A family of convex sets in the plane satisfying the \((4,3)\)-property can be pierced by nine points (2020)
[98] McMullen, P., The maximum numbers of faces of a convex polytope, Mathematika, 179-184 (1970) · Zbl 0217.46703 · doi:10.1112/S0025579300002850
[99] Meunier, Fr\'{e}d\'{e}ric, Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms. The rainbow at the end of the line-a PPAD formulation of the colorful Carath\'{e}odory theorem with applications, 1342-1351 (2017), SIAM, Philadelphia, PA · Zbl 1410.68373 · doi:10.1137/1.9781611974782.87
[100] Montejano, Luis, A new topological Helly theorem and some transversal results, Discrete Comput. Geom., 390-398 (2014) · Zbl 1322.52006 · doi:10.1007/s00454-014-9613-6
[101] Montejano, Luis, Piercing numbers for balanced and unbalanced families, Discrete Comput. Geom., 358-364 (2011) · Zbl 1217.52004 · doi:10.1007/s00454-010-9295-7
[102] Moran, Shay, On weak \(\epsilon \)-nets and the Radon number, Discrete Comput. Geom., 1125-1140 (2020) · Zbl 1472.52002 · doi:10.1007/s00454-020-00222-y
[103] Motzkin, Theodore S., A proof of Hilbert’s Nullstellensatz, Math. Z., 341-344 (1955) · Zbl 0068.25201 · doi:10.1007/BF01187946
[104] Nasz\'{o}di, M\'{a}rton, Proof of a conjecture of B\'{a}r\'{a}ny, Katchalski and Pach, Discrete Comput. Geom., 243-248 (2016) · Zbl 1339.52009 · doi:10.1007/s00454-015-9753-3
[105] Onn, Shmuel, The Radon-split and the Helly-core of a point configuration, J. Geom., 157-162 (2001) · Zbl 1001.52001 · doi:10.1007/s00022-001-8577-x
[106] {\"O}zaydin, M., {Equivariant maps for the symmetric group} (1987)
[107] Pach, J\'{a}nos, A Tverberg-type result on multicolored simplices, Comput. Geom., 71-76 (1998) · Zbl 0896.68143 · doi:10.1016/S0925-7721(97)00022-9
[108] P\'{a}lv\"{o}lgyi, D\"{o}m\"{o}t\"{o}r, 36th International Symposium on Computational Geometry. Radon numbers grow linearly, LIPIcs. Leibniz Int. Proc. Inform., Art. 60-5 (2020), Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern · Zbl 07760189
[109] Perles, M. A., Some variations on {T}verberg’s theorem, Israel J. Math., 957\ndash 972 pp. (2016) · Zbl 1357.52003 · doi:10.1007/s11856-016-1434-2
[110] P{\'o}r, A., {Universality of vector sequences and universality of Tverberg partitions} (2018)
[111] Radon, Johann, Mengen konvexer K\"{o}rper, die einen gemeinsamen Punkt enthalten, Math. Ann., 113-115 (1921) · JFM 48.0834.04 · doi:10.1007/BF01464231
[112] Ram\'{\i }rez-Alfons\'{\i }n, J. L., Lawrence oriented matroids and a problem of McMullen on projective equivalences of polytopes, European J. Combin., 723-731 (2001) · Zbl 0984.52019 · doi:10.1006/eujc.2000.0492
[113] Reay, John R., Several generalizations of Tverberg’s theorem, Israel J. Math., 238-244 (1980) (1979) · Zbl 0428.52002 · doi:10.1007/BF02760885
[114] Rubin, N., An improved bound for weak \(\varepsilon \)-nets in the plane, Proceedings of the Annual Symposium on Foundations of Computer Science ({FOCS}), 224\ndash 235 pp. (2018)
[115] Rubin, N., Stronger bounds for weak \(\varepsilon \)-nets in higher dimensions, Proceedings of the Annual Symposium on Foundations of Computer Science ({STOC 2021}), 62 pp. (2021)
[116] Sarkaria, K. S., Tverberg’s theorem via number fields, Israel J. Math., 317-320 (1992) · Zbl 0786.52005 · doi:10.1007/BF02808223
[117] Scott, Alex, A survey of \(\chi \)-boundedness, J. Graph Theory, 473-504 (2020) · Zbl 1486.05102 · doi:10.1002/jgt.22601
[118] Sierksma, G., Convexity without linearity; the {D}utch cheese problem (1979)
[119] Sober\'{o}n, Pablo, Equal coefficients and tolerance in coloured Tverberg partitions, Combinatorica, 235-252 (2015) · Zbl 1374.52006 · doi:10.1007/s00493-014-2969-7
[120] Stanley, Richard P., The upper bound conjecture and Cohen-Macaulay rings, Studies in Appl. Math., 135-142 (1975) · Zbl 0308.52009 · doi:10.1002/sapm1975542135
[121] Suk, Andrew, A note on order-type homogeneous point sets, Mathematika, 37-42 (2014) · Zbl 1301.05353 · doi:10.1112/S0025579313000247
[122] Tancer, Martin, Thirty Essays on Geometric Graph Theory. Intersection patterns of convex sets via simplicial complexes: a survey, 521-540 (2013), Springer, New York · Zbl 1276.52010 · doi:10.1007/978-1-4614-0110-0\_28
[123] Tverberg, H., A generalization of Radon’s theorem, J. London Math. Soc., 123-128 (1966) · Zbl 0131.20002 · doi:10.1112/jlms/s1-41.1.123
[124] Vu\v{c}i\'{c}, Aleksandar, Note on a conjecture of Sierksma, Discrete Comput. Geom., 339-349 (1993) · Zbl 0784.52007 · doi:10.1007/BF02189327
[125] Wegner, Gerd, \(d\)-collapsing and nerves of families of convex sets, Arch. Math. (Basel), 317-321 (1975) · Zbl 0308.52005 · doi:10.1007/BF01229745
[126] Wenger, Rephael, Advances in discrete and computational geometry. Progress in geometric transversal theory, Contemp. Math., 375-393 (1996), Amer. Math. Soc., Providence, RI · Zbl 0935.52005 · doi:10.1090/conm/223/03150
[127] White, Moshe J., On Tverberg partitions, Israel J. Math., 549-553 (2017) · Zbl 1364.05012 · doi:10.1007/s11856-017-1490-2
[128] White, M. J., {A new topological property of nerves of convex sets in \({\mathbb R}^d\)} (2021)
[129] \v{Z}ivaljevi\'{c}, Rade T., The colored Tverberg’s problem and complexes of injective functions, J. Combin. Theory Ser. A, 309-318 (1992) · Zbl 0782.52003 · doi:10.1016/0097-3165(92)90028-S
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.