×

Numerical solution of two-point nonlinear boundary value problems via Legendre-Picard iteration method. (English) Zbl 07538453

Summary: The aim of the present work is to introduce an effective numerical method for solving two-point nonlinear boundary value problems. The proposed iterative scheme, called the Legendre-Picard iteration method is based on the Picard iteration technique, shifted Legendre polynomials and Legendre-Gauss quadrature formula. In the Legendre-Picard iteration method, the boundary value problem is reduced to an iterative formula for updating the coefficients of the approximate solution in each step and with a straightforward manner, the integrals of the shifted Legendre polynomials are calculated. In addition, to reduce the CPU time, a vector-matrix scheme of the Legendre-Picard iteration method is constructed. The convergence analysis of the method is studied. Five nonlinear boundary value problems are given to illustrate the validity of the Legendre-Picard iteration method. Numerical results indicate the good performance and the precision of the proposed procedure.

MSC:

65-XX Numerical analysis
76-XX Fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Ahmadinia, M.; Safari, Z., Numerical solution of singularly perturbed boundary value problems by improved least squares method, J. Comput. Appl. Math., 331, 156-165 (2018) · Zbl 1377.65092
[2] Akgül, E. K., Reproducing kernel Hilbert space method for nonlinear boundary-value problems, Math. Methods Appl. Sci., 41, 18, 9142-9151 (2018) · Zbl 1407.34026
[3] Ali, L.; Islam, S.; Gul, T.; Khan, I.; Dennis, L. C.C., New version of optimal homotopy asymptotic method for the solution of nonlinear boundary value problems in finite and infinite intervals, Alex. Eng. J., 55, 3, 2811-2819 (2016)
[4] Alias, N.; Manaf, A.; Ali, A.; Habib, M., Solving Troesch’s problem by using modified nonlinear shooting method, J. Teknol., 78, 4-4, 45-52 (2016)
[5] Arslanturk, C., A decomposition method for fin efficiency of convective straight fins with temperature-dependent thermal conductivity, Int. Commun. Heat Mass Transfer, 32, 6, 831-841 (2005)
[6] Avazzadeh, Z.; Heydari, M., The application of block pulse functions for solving higher-order differential equations with multi-point boundary conditions, Adv. Differential Equations (2016) · Zbl 1348.34044
[7] Bai, X., Modified Chebyshev-Picard Iteration Methods for Solution of Initial Value and Boundary Value Problems (2010), Texas A & M University: Texas A & M University College Station, TX, (Ph.D. dissertation)
[8] Bai, X., Modified Chebyshev-Picard iteration methods for solution of boundary value problems, J. Astronaut. Sci., 58, 4, 615-642 (2011)
[9] Bai, X.; Junkins, J., Modified Chebyshev-Picard iteration methods for orbit propagation, J. Astronaut. Sci., 58, 4, 583-613 (2011)
[10] Bai, X.; Junkins, J., Modified Chebyshev-Picard iteration methods for solution of initial value problems, J. Astronaut. Sci., 59, 1-2, 335-359 (2012)
[11] Bai, X.; Junkins, J., Modified Chebyshev-Picard iteration methods for station-keeping of translunar Halo orbits, Math. Probl. Eng. (2012) · Zbl 1264.70032
[12] Bello, N.; Jibril Alkali, A.; Roko, A., A fixed point iterative method for the solution of two-point boundary value problems for a second order differential equations, Alex. Eng. J., 57, 4, 2515-2520 (2018)
[13] Bhrawy, A. H.; Alofi, A. S.; El-Soubhy, S. I., Spectral shifted Jacobi tau and collocation methods for solving fifth-order boundary value problems, Abstr. Appl. Anal. (2011) · Zbl 1221.65171
[14] Burden, R. L.; Faires, J. D., Numerical Analysis (2011), Brooks/Cole, Cengage Learning: Brooks/Cole, Cengage Learning Boston
[15] H. Caglar, N. Caglar, M. Ozer, B-Spline solution and the chaotic dynamics of Troesch’s problem, in: Proceedings 3rd Int. Congress APMAS2013, Antalya, Turkey, 2013, pp. 24-28.
[16] Clenshaw, C. W., The numerical solution of linear differential equations in Chebyshev series, Math. Proc. Cambridge Philos. Soc., 53, 1, 134-149 (1957) · Zbl 0077.32503
[17] Clenshaw, C. W.; Norton, H. J., The solution of nonlinear ordinary differential equations in Chebyshev series, Comput. J., 6, 1, 88-92 (1963) · Zbl 0113.11002
[18] Costabile, F. A.; Gualtieri, M. I.; Serafini, G., Cubic Lidstone-Spline for numerical solution of BVPs, Math. Comput. Simulation, 141, 56-64 (2017) · Zbl 07313863
[19] Domairry, G.; Fazeli, M., Homotopy analysis method to determine the fin efficiency of convective straight fins with temperature-dependent thermal conductivity, Commun. Nonlinear Sci. Numer. Simul., 14, 2, 489-499 (2009)
[20] El-Gamel, M., Numerical solution of Troesch’s problem by sinc-collocation method, Appl. Math., 4, 4, 707-712 (2013)
[21] Feagin, T.; Nacozy, P., Matrix formulation of the Picard method for parallel computation, Celestial Mech. Dynam. Astronom., 29, 2, 107-115 (1983) · Zbl 0513.70013
[22] Filipov, S. M.; Gospodinov, I. D.; Faragó, I., Shooting-projection method for two-point boundary value problems, Appl. Math. Lett., 72, 10-15 (2017) · Zbl 1373.34032
[23] Fukushima, T., Vector integration of dynamical motions by the Picard-Chebyshev method, Astron. J., 113, 6, 2325-2328 (1997)
[24] Ganji, D. D.; Afrouzi, G. A.; Talarposhti, R. A., Application of variational iteration method and homotopy perturbation method for nonlinear heat diffusion and heat transfer equations, Phys. Lett. A, 368, 6, 450-457 (2007) · Zbl 1209.80041
[25] Ganji, D. D.; Rahimi, M.; Rahgoshay, M.; Jafari, M., Analytical and numerical investigation of fin efficiency and temperature distribution of conductive, convective, and radiative straight fins, Heat Transfer Asian Res., 40, 3, 233-245 (2011)
[26] Ghasemi, S. E.; Zolfagharian, A.; Hatami, M.; Ganji, D. D., Analytical thermal study on nonlinear fundamental heat transfer cases using a novel computational technique, Appl. Therm. Eng., 98, 88-97 (2016)
[27] Ghorbani, A.; Passandideh, H., The modified VIM for certain type of the nonlinear two-point boundary value problems, Int. J. Comput. Methods, 17, 3 (2018)
[28] Gidaspow, D.; Baker, B. S., Amodel for discharge of storage batteries, J. Electrochem. Soc., 120, 8, 1005-1010 (1973)
[29] Gümgüm, S., Laguerre wavelet method for solving Troesch equation, J. Baun. Inst. Sci. Technol., 21, 2, 494-502 (2019)
[30] Ha, S. N., A nonlinear shooting method for two-point boundary value problems, Comput. Math. Appl., 42, 1411-1420 (2001) · Zbl 0999.65077
[31] Hashemi, M. S.; Abbasbandy, S., A geometric approach for solving Troesch’s problem, Bull. Malays. Math. Sci. Soc., 40, 1, 97-116 (2017) · Zbl 1357.65099
[32] Hassan, H. N.; El-Tawil, M. A., An efficient analytic approach for solving two-point nonlinear boundary value problems by homotopy analysis method, Math. Methods Appl. Sci., 34, 8, 977-989 (2011) · Zbl 1226.34021
[33] Haynes, R. D.; Ahmed, F., Linearized domain decomposition approaches for nonlinear boundary value problems, J. Comput. Appl. Math., 346, 620-637 (2019) · Zbl 1402.65072
[34] Heydari, M.; Avazzadeh, Z.; Hosseinzadeh, N., Haar wavelet method for solving high-order differential equations with multi-point boundary conditions, J. Appl. Comput. Mech. (2020)
[35] Heydari, M.; Hosseini, S. M.; Loghmani, G. B., Numerical solution of singular IVPs of Lane-Emden type using integral operator and radial basis functions, Int. J. Ind. Math., 4, 2, 135-146 (2012)
[36] Heydari, M.; Loghmani, G. B.; Dehghan, A. A., A combination of pseudo-spectral method and extrapolation for solving MHD flow and heat transfer about a rotating disk, Iran. J. Sci. Technol. Trans. Mech. Eng., 38, 1, 25-44 (2014)
[37] Heydari, M.; Loghmani, G. B.; Dehghan, A. A., Numerical study of generalized three-dimensional MHD flow over a porous stretching sheet, J. Appl. Fluid Mech., 7, 3, 473-483 (2014)
[38] Hosseini, E.; Loghmani, G. B.; Heydari, M.; Wazwaz, A. M., A numerical study of electrohydrodynamic flow analysis in a circular cylindrical conduit using orthonormal Bernstein polynomials, Comput. Methods Differ. Equ., 5, 4, 280-300 (2017) · Zbl 1424.76046
[39] Imani, A.; Aminataei, A.; Imani, A., Collocation method via Jacobi polynomials for solving nonlinear ordinary differential equations, Int. J. Math. Math. Sci. (2011) · Zbl 1221.65173
[40] Inc, M.; Akgül, A., The reproducing kernel Hilbert space method for solving Troesch’s problem, J. Assoc. Arab Univ. Basic Appl. Sci., 14, 1, 19-27 (2013)
[41] Joneidi, A. A.; Ganji, D. D.; Babaelahi, M., Differential transformation method to determine fin efficiency of convective straight fins with temperature dependent thermal conductivity, Int. Commun. Heat Mass Transfer, 36, 757-762 (2009)
[42] Junkins, J.; Younes, A. B.; Woollands, R. M.; Bai, X., Picard iteration, Chebyshev polynomials and Chebyshev-Picard methods: Application in astrodynamics, J. Astronaut. Sci., 60, 3, 623-653 (2013)
[43] Kanti Roy, P.; Mallick, A., Thermal analysis of straight rectangular fin using homotopy perturbation method, Alex. Eng. J., 55, 3, 2269-2277 (2016)
[44] Kanti Roy, P.; Mondal, H.; Mallick, A., A decomposition method for convective-radiative fin with heat generation, Ain Shams Eng. J., 6, 1, 307-313 (2015)
[45] Khan, R. A., Generalized approximation method and a thin film flow of a third grade fluid on a moving belt, Comput. Math. Model., 21, 1 (2010) · Zbl 1402.76013
[46] Khan, S. I.; Khan, U.; Ahmed, N.; Mohyud-Din, S. T., Variation of parameters method for heat diffusion and heat convection equations, Int. J. Appl. Comput. Math., 3, 1, 185-193 (2017) · Zbl 1395.65117
[47] Khuri, S. A.; Sayfy, A., Troesch’s problem: A B-spline collocation approach, Math. Comput. Model., 54, 9, 1907-1918 (2011) · Zbl 1235.65086
[48] Kim, D.; Junkins, J. L.; Turner, J. D., Multisegment scheme applications to modified Chebyshev Picard iteration method for highly elliptical orbits, Math. Probl. Eng. (2015)
[49] P. Klankaew, N. Pochai, Numerical simulation of a nonlinear thin fluid film flow velocity model of a third grade fluid on a moving belt using finite difference method with newton iterative scheme, in: Proceed. Int. Multi Conf. Eng. Comput. Sci. March 13-15 (2019) Hong Kong.
[50] Kouibia, A.; Pasadas, M.; Belhaj, Z.; Hananel, A., The variational spline method for solving Troesch’s problem, J. Math. Chem., 53, 868-879 (2015) · Zbl 1323.65085
[51] Lu, Y.; Yin, Q.; Li, H.; Sun, H.; Yang, Y.; Hou, M., The LS-SVM algorithms for boundary value problems of high-order ordinary differential equations, Adv. Differential Equations, 195 (2019) · Zbl 1459.65116
[52] Mabood, F.; Pochai, N., Comparison of optimal homotopy asymptotic and adomian decomposition methods for a thin film flow of a third grade fluid on a moving belt, Adv. Math. Phys. (2015) · Zbl 1375.76021
[53] Macomber, B.; Probe, A. B.; Woollands, R.; Read, J.; Junkins, J. L., Enhancements to modified Chebyshev-Picard iteration efficiency for perturbed orbit propagation, Comput. Model. Eng. Sci., 111, 1, 29-64 (2016)
[54] Mahmood, T.; Khan, N., Thin film flow of a third grade fluid through porous medium over an inclined plane, Int. J. Nonlinear Sci., 14, 1, 53-59 (2012) · Zbl 1303.76123
[55] Marinca, V.; Marinca, B., Optimal auxiliary functions method for nonlinear thin film flow of a third grade fluid on a moving belt, Proc. Rom. Acad., 19, 4, 575-580 (2018)
[56] Matinfar, M.; Ghasemi, M., Solving BVPs with shooting method and VIMHP, J. Egypt. Math. Soc., 21, 3, 354-360 (2013) · Zbl 1281.65103
[57] Mehrpouya, M. A.; Salehi, R., A numerical scheme based on the collocation and optimization methods for accurate solution of sensitive boundary value problems, Eur. Phys. J. Plus, 136, 909 (2021)
[58] Mehrpouya, M. A.; Shamsi, M., Gauss pseudospectral and continuation methods for solving two-point boundary value problems in optimal control theory, Appl. Math. Model., 39, 17, 5047-5057 (2015) · Zbl 1443.65108
[59] Mehrpouya, M. A.; Shamsi, M.; Azhmyakov, V., An efficient solution of hamiltonian boundary value problems by combined gauss pseudospectral method with differential continuation approach, J. Franklin Inst., 351, 10, 4765-4785 (2014) · Zbl 1395.49027
[60] Mirmoradi, S. H.; Hosseinpour, I.; Ghanbarpour, S.; Barari, A., Application of an approximate analytical method to nonlinear Troesch’s problem, Appl. Math. Sci., 3, 32, 1579-1585 (2009) · Zbl 1334.76106
[61] Mirzaee, F.; Alipour, S., Numerical solution of nonlinear partial quadratic integro-differential equations of fractional order via hybrid of block-pulse and parabolic functions, Numer. Methods Partial Differential Equations, 35, 3, 1134-1151 (2019) · Zbl 1418.65152
[62] Momani, S.; Abuasad, S.; Odibat, Z., Variational iteration method for solving nonlinear boundary value problems, Appl. Math. Comput., 183, 1351-1358 (2006) · Zbl 1110.65068
[63] Moradi, A.; Ahmadikia, H., Analytical solution for different profiles of fin with temperature-dependent thermal conductivity, Math. Probl. Eng. (2010) · Zbl 1204.74039
[64] Nemati, H.; Ghanbarpour, M.; Hajibabayi, M.; Hemmatnezhad, Thin film flow of non-Newtonian fluids on a vertical moving belt using homotopy analysis method, J. Eng. Sci. Technol. Rev., 2, 1, 118-122 (2009)
[65] Pandey, P. K., A numerical technique for the solution of general eighth order boundary value problems: a finite difference method, Ural Math. J., 4, 1, 56-62 (2018) · Zbl 1450.65071
[66] Rajabi, A., Homotopy perturbation method for fin efficiency of convective straight fins with temperature-dependent thermal conductivity, Phys. Lett. A, 364, 1, 33-37 (2007) · Zbl 1203.74148
[67] Ramos, H.; Rufai, M. A., A third-derivative two-step block Falkner-type method for solving general second-order boundary-value systems, Math. Comput. Simulation, 165, C, 139-155 (2019) · Zbl 07316741
[68] Read, J. L.; Bani Younes, A.; Macomber, B.; Turner, J.; Junkins, J. L., State transition matrix for perturbed orbital motion using modified Chebyshev Picard iteration, J. Astronaut. Sci., 62, 2, 148-167 (2015)
[69] Saadatmandi, A.; Abdolahi-Niasar, T., Numerical solution of Troesch’s problem using Christov rational functions, Comput. Methods Differ. Equ., 3, 4, 247-257 (2015) · Zbl 1412.65061
[70] See, P. P.; Abdul Majid, Z.; Suleiman, M., Solving nonlinear two point boundary value problem using two step direct method, J. Qual. Meas. Anal., 7, 1, 129-140 (2011)
[71] Shen, J.; Tang, T.; Wang, L. L., Spectral Methods: Algorithms, Analysis and Applications (2011), Springer-Verlag: Springer-Verlag Berlin, Heidelberg · Zbl 1227.65117
[72] Sinha, S. C.; Butcher, E. A., Symbolic computation of fundamental solution matrices for linear time-periodic dynamical systems, J. Sound Vib., 206, 1, 61-85 (1997) · Zbl 1235.15003
[73] Swenson, T.; Woollands, R.; Junkins, J. L.; Lo, M., Application of modified Chebyshev Picard iteration to differential correction for improved robustness and computation time, J. Astronaut. Sci., 64, 3, 267-284 (2017)
[74] Tafakkori-Bafghi, M.; Loghmani, G. B.; Heydari, M.; Bai, X., Jacobi-Picard iteration method for the numerical solution of nonlinear initial value problems, Math. Methods Appl. Sci., 43, 3, 1084-1111 (2020) · Zbl 1452.65121
[75] Torabi, M.; Yaghoobi, H.; Aziz, A., Analytical solution for convective-radiative continuously moving fin with temperature-dependent thermal conductivity, Int. J. Thermophys., 33, 924-941 (2012)
[76] Torkaman, S.; Heydari, M.; Loghmani, G. B.; Ganji, D. D., Barycentric rational interpolation method for numerical investigation of magnetohydrodynamics nanofluid flow and heat transfer in nonparallel plates with thermal radiation, Heat Transfer Asian Res., 49, 1, 565-590 (2020)
[77] Torkaman, S.; Loghmani, G. B.; Heydari, M.; Rashidi, M. M., Novel numerical solutions of nonlinear heat transfer problems using the linear barycentric rational interpolation, Heat Transfer Asian Res., 48, 4, 1318-1344 (2019)
[78] Vazquez-Leal, H.; Khan, Y.; Fernández-Anaya, G.; Herrera-May, A.; Sarmiento-Reyes, A.; Filobello-Nino, U.; Jimenez-Fernández, V. M.; Pereyra-Díaz, D., A general solution for Troesch’s problem, Math. Probl. Eng. (2012) · Zbl 1264.65132
[79] Vazquez-Leal, H.; Koçak, H.; Ates, I., Rational approximations for heat radiation and Troesch’s equations, Int. J. Comput. Methods, 13, 6 (2016) · Zbl 1359.80016
[80] Wazwaz, A. M., Linear and Nonlinear Integral Equations: Methods and Applications (2011), Springer Science & Business Media: Springer Science & Business Media Berlin, Heidelberg · Zbl 1227.45002
[81] Woollands, R.; Junkins, J. L., Nonlinear differential equation solvers via adaptive Picard-Chebyshev iteration: Applications in astrodynamics, J. Guid. Control Dyn., 42, 5, 1007-1022 (2018)
[82] Youssef, I. K.; El-Arabawy, H. A., Picard iteration algorithm combined with Gauss-Seidel technique for initial value problems, Appl. Math. Comput., 190, 1, 345-355 (2007) · Zbl 1122.65369
[83] Zarebnia, M.; Sajjadian, M., The sinc-Galerkin method for solving Troesch’s problem, Math. Comput. Model., 56, 9-10, 218-228 (2012) · Zbl 1255.65153
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.