×

\(c\)-almost periodic type distributions. (English) Zbl 1484.46046

Summary: We introduce and systematically analyze various classes of \(c\)-almost periodic type distributions and asymptotically \(c\)-almost periodic type distributions with values in complex Banach spaces. We provide an interesting application in the study of existence of asymptotically \(c\)-almost periodic type solutions for a class of ordinary differential equations in the distributional spaces.

MSC:

46F05 Topological linear spaces of test functions, distributions and ultradistributions
34C27 Almost and pseudo-almost periodic solutions to ordinary differential equations
42A75 Classical almost periodic functions, mean periodic functions
PDF BibTeX XML Cite
Full Text: MNR

References:

[1] Bohr H., “Zur theorie der fastperiodischen Funktionen I”, Acta Mathematica, 45 (1924), 29-127 · JFM 52.0330.04
[2] Besicovitch A.S., Almost Periodic Functions, Dover Publ., New York, 1954
[3] Corduneanu C., Almost Periodic Functions, Wiley, New York, 1968 · Zbl 0175.09101
[4] Fink A.M., Almost Periodic Differential Equations, Springer-Verlag, Berlin, 1974 · Zbl 0325.34039
[5] Dontvi I.K., Bounded, almost periodic and asymptotically almost periodic solutions of linear differential equations with generalized perturbations, PhD. thesis, Odessa, USSR, 1988 · Zbl 0665.34008
[6] N’Guérékata G.M., Almost Automorphic and Almost Periodic Functions in Abstract Spaces, Kluwer Acad. Publ., Dordrecht, 2001 · Zbl 1001.43001
[7] Bezandry P.H., Diagana T., Almost Periodic Stochastic Processes, Springer, New York, 2011 · Zbl 1237.60002
[8] de Andrade B., Lizama C., “Existence of asymptotically almost periodic solutions for damped wave equations”, Journal of Mathematical Analysis and Applications, 382 (2011), 761-771 · Zbl 1221.35255
[9] Diagana T., Almost Automorphic Type and Almost Periodic Type Functions in Abstract Spaces, Springer-Verlag, New York, 2013 · Zbl 1279.43010
[10] Kostić M., Almost Periodic and Almost Automorphic Type Solutions of Abstract Volterra Integro-Differential Equations, W. de Gruyter, Berlin, 2019 · Zbl 1408.43005
[11] Zaidman S., Almost-Periodic Functions in Absract Spaces, Pitman, Boston, 1985 · Zbl 0648.42006
[12] Alvarez E., Gómez A., Pinto M., “\((\omega,c)\)-Periodic functions and mild solution to abstract fractional integro-differential equations”, Electronic Journal of Qualitative Theory of Differential Equations, 16 (2018), 1-8 · Zbl 1413.34220
[13] Alvarez E., Castillo S., Pinto M., “\((\omega,c)\)-Pseudo periodic functions, first order Cauchy problem and Lasota-Wazewska model with ergodic and unbounded oscillating production of red cells”, Boundary Value Problems, 106 (2019), 1-20 · Zbl 07634250
[14] Chaouchi B., Kostić M., Pilipović S., Velinov D., “Semi-Bloch periodic functions, semi-anti-periodic functions and applications”, Chelyabinsk Physical and Mathematical Journal, 5 (2020), 243-255 · Zbl 1484.43004
[15] Hasler M.F., “Bloch-periodic generalized functions”, Novi Sad Journal of Mathematics, 46 (2016), 135-143 · Zbl 1464.46050
[16] Hasler M.F., N’Guérékata G.M., “Bloch-periodic functions and some applications”, Nonlinear Studies, 21 (2014), 21-30 · Zbl 1310.47068
[17] Khalladi M.T., Kostić M., Pinto M., Rahmani A., Velinov D., “\(c\)-Almost periodic type functions and applications”, Nonautonomous Dynamical Systems, 7 (2020), 176-193. · Zbl 1462.42013
[18] Kostić M., “Asymptotically almost periodic and asymptotically almost automorphic vector-valued generalized functions”, Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 3 (2019), 34-53 · Zbl 1472.46045
[19] Zhang C., “Ergodicity and asymptotically almost periodic solutions of some differential equations”, International Journal of Mathematics and Mathematical Sciences, 25 (2001), 787-800 · Zbl 0996.34034
[20] Schwartz L., Theorie des Distributions, 2 vols, Hermann, Paris, 1950, 1951 · Zbl 0037.07301
[21] Cioranescu I., “On the abstract Cauchy problem in spaces of almost periodic distributions”, Journal of Mathematical Analysis and Applications, 148 (1990), 440-462 · Zbl 0724.34066
[22] Cioranescu I., “Asymptotically almost periodic distributions”, Appl. Anal., 34 (1989), 251-259 · Zbl 0661.46031
[23] Cheban D.N., Asymptotically Almost Periodic Solutions of Differential Equations, Hindawi Publ., 2009 · Zbl 1222.34002
[24] Halanay A., Wexler D., Teoria Calitativa a Sistemelor cu Impulsuri, Editura Academiei Republicii Socialiste Romania, Bucuresti, 1968 · Zbl 0176.05202
[25] Stanković B., “Asymptotic almost distributions, structural theorem”, Serdica, 19 (1993), 198-203 · Zbl 0793.46018
[26] Stanković B., “Asymptotic almost periodic distributions, application to partial differential equations.”, Proceedings of the Steklov Institute of Mathematics, 203 (1995), 367-375
[27] Basit B., Güenzler H., “Generalized vector valued almost periodic and ergodic distributions”, Journal of Mathematical Analysis and Applications, 314 (2006), 363-381 · Zbl 1094.46023
[28] Bouzar C., Khalladi M.T., “Linear differential equations in the algebra of almost periodic generalized functions”, Rendiconti del Seminario Matematico Università e Politecnico di Torino, 70 (2012), 111-120 · Zbl 1304.46037
[29] Bouzar C., Khalladi M.T., Tchouar F.Z., “Almost automorphic generalized functions”, Novi Sad Journal of Mathematics, 45 (2015), 207-214 · Zbl 1450.43004
[30] Bouzar C., Khalladi M.T., “On asymptotically almost periodic generalized solutions of differential equations”, Operator Theory: Advances and Applications, 245 (2015), 35-43 · Zbl 1332.34080
[31] Bouzar C., Tchouar F.Z., “Almost automorphic distributions”, Mediterranean Journal of Mathematics, 14:151 (2017), 13 · Zbl 1390.46041
[32] Kostić M., Velinov D., “Vector-valued almost automorphic distributions and vector-valued almost ultradistributions”, Novi Sad Journal of Mathematics, 48 (2018), 111-121 · Zbl 1473.46046
[33] Bouzar C., Tchouar F.Z., “Asymptotic almost automorphy of functions and distributions”, Ural Mathematical Journal, 6 (2020), 54-70 · Zbl 1448.42016
[34] Kostić M., Pilipović S., Velinov D., “Quasi-asymptotically almost periodic vector-valued generalized functions”, Sarajevo Journals of Mathematics, 15 (2019), 181-199 · Zbl 1449.46030
[35] Haraux A., Souplet P., “An example of uniformly recurrent function which is not almost periodic”, Journal of Fourier Analysis and Applications, 10 (2004), 217-220 · Zbl 1051.42008
[36] Kostić M., Velinov D., “A note on almost anti-periodic functions in Banach spaces”, Kragujevac Journal of Mathematics, 44 (2020), 287-297 · Zbl 1488.35567
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.