A duality result in locally convex cones. (English) Zbl 1503.46002

Summary: In this paper, we consider a locally convex cone \((\mathcal{P},\mathcal{V})\) and verify the dual of \((\operatorname{Conv}(\mathcal{P}),\overline{\mathcal{V}})\) the locally convex cone of the non-empty convex subsets of \(\mathcal{P}\). Under some semilattice conditions, we characterize the dual of \(\operatorname{Conv}(\underbrace{\dots}_{n\ \textrm{times}} (\operatorname{Conv}(\mathcal{P}))\).


46A03 General theory of locally convex spaces
46A20 Duality theory for topological vector spaces
Full Text: DOI


[1] Ayaseh, D.; Ranjbari, A., Order bornological locally convex lattice cones, Vladikavkaz Math. J., 19, 3, 21-30 (2017) · Zbl 1463.46007
[2] Ayaseh, D.; Ranjbari, A., Bornological Convergence in Locally Convex Cones, Mediterr. J. Math., 13, 4, 1921-1931 (2016) · Zbl 1359.46002
[3] Dastouri, A., Ranjbari, A.: Some Notes on Barreledness in Locally Convex Cones, Bull. Iran. Math. Soc. doi:10.1007/s41980-020-00519-x · Zbl 1495.46002
[4] Keimel, K., Roth, W.: Ordered cones and approximation. Lecture Notes in Mathematics, vol. 1517. Springer-Verlag, Berlin (1992) · Zbl 0752.41033
[5] Keimel, K.; Roth, W., A Korovkin type approximation theorem for set-valued functions, Proc. Amer. Math. Soc., 104, 819-824 (1988) · Zbl 0693.47032
[6] Roth, W.: Operator-valued measures and integrals for cone-valued functions. Lecture Notes in Mathematics, vol. 1964. Springer-Verlag, Berlin (2009) · Zbl 1187.28002
[7] Roth, W., Korovkin theory for cone-valued functions, Positivity, 21, 3, 449-472 (2017) · Zbl 1422.47022
[8] Roth, W., Hahn-Banach type theorems for locally convex cones, J. Austral. Math. Soc. Ser. A, 68, 1, 104-125 (2000) · Zbl 0968.46005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.