×

Almost periodic functions and their applications: a survey of results and perspectives. (English) Zbl 1477.42007

Summary: The main aim of this survey article is to present several known results about vector-valued almost periodic functions and their applications. We separately consider almost periodic functions depending on one real variable and almost periodic functions depending on two or more real variables. We address several open problems and possibilities for further investigations of almost periodic functions, quoting more than two hundred references about the subject under our consideration.

MSC:

42A75 Classical almost periodic functions, mean periodic functions
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Bohr, H., Zur theorie der fastperiodischen Funktionen I; II; III, Acta Mathematica, 45, 29-127 (1924) · JFM 50.0196.01
[2] Levitan, M., Almost Periodic Functions (1953), Berlin, Germany: Springer, Berlin, Germany, in Russian · Zbl 1222.42002
[3] Bochner, S., A new approach to almost periodicity, Proceedings of the National Academy of Sciences, 48, 12, 2039-2043 (1962) · Zbl 0112.31401
[4] Guérékata, G. M. N., Almost Automorphic and Almost Periodic Functions in Abstract Spaces (2001), Dordrecht, The Netherlands: Kluwer, Dordrecht, The Netherlands
[5] Kostić, M., Selected Topics in Almost Periodicity (2021), Berlin, Germany: De Gruyter, Berlin, Germany
[6] Bart, H.; Goldberg, S., Characterizations of almost periodic strongly continuous groups and semigroups, Mathematische Annalen, 236, 2, 105-116 (1978) · Zbl 0365.47019
[7] Foias, C.; Zaidman, S., Almost-periodic solutions of parabolic systems, Annali della Scuola normale superiore di Pisa, 15, 247-262 (1961) · Zbl 0100.30303
[8] Zhikov, V. V., On the question of harmonic analysis of bounded solutions of operator equations, Doklady Akademii Nauk, 169, 1254-1257 (1966)
[9] Zhikov, V. V., On a problem of Bochner and von Neumann, Mathematical Notes, 3, 529-538 (1968) · Zbl 0179.47401
[10] Perov, A. I.; Hai, T. K., Almost periodic solutions of s homogeneous differential equations in a Banach space, Differential Equations, 8, 453-458 (1972)
[11] Phóng, V. Q., Almost Periodic and Stable Semigroups of Operators (1997), Amsterdam, Netherlands: Banach Center Publications, Amsterdam, Netherlands
[12] Kostić, M., Almost Periodic and Almost Automorphic Type Solutions to Integro-Differential Equations (2019), Berlin, Germany: de Gruyter, Berlin, Germany · Zbl 1427.45001
[13] Phóng, V. Q.; Lyubich, Y. I., A spectral criterion for asymptotic almost periodicity of uniformly continuous representations of abelian semigroups, Journal of Soviet Mathematics, 51, 1263-1266 (1990) · Zbl 0699.22006
[14] Phóng, V. Q.; Lyubich, Y. I., A spectral criterion for almost periodicity of one-parameter semigroups, Journal of Soviet mathematics, 48, 644-647 (1990) · Zbl 0695.47033
[15] Ruess, W. M.; Summers, W. H., Asymptotic almost periodicity and motions of semigroups of operators, Linear Algebra and Its Applications, 84, 335-351 (1986) · Zbl 0616.47047
[16] Ruess, W. M.; Summers, W. H., Compactness in spaces of vector valued continuous functions and asymptotic almost periodicity, Mathematische Nachrichten, 135, 1, 7-33 (1988) · Zbl 0666.46007
[17] Ruess, W. M.; Summers, W. H., Integration of asymptotically almost periodic functions and weak asymptotic almost periodicity, Dissertationes Mathematicae, 279, 35 (1989) · Zbl 0668.43005
[18] Ruess, W. M.; Summers, W. H., Weak almost periodicity and the strong ergodic limit theorem for periodic evolution systems, Journal of Functional Analysis, 94, 1, 177-195 (1990) · Zbl 0721.47051
[19] Henríquez, H. R., On Stepanov-almost periodic semigroups and cosine functions of operators, Journal of Mathematical Analysis and Applications, 146, 2, 420-433 (1990) · Zbl 0719.47023
[20] Bahaj, M.; Sidki, O., Almost periodic solutions of semilinear equations with analytic semigroups in Banach spaces, Electronic Journal of Differential Equations, 98, 1-11 (2002) · Zbl 1026.34050
[21] Burton, T. A., Stability and Periodic Solutions of Ordinary and Functional Differential Equations (1985), Orlando, FL, USA: Academic Press, Orlando, FL, USA · Zbl 0635.34001
[22] Liu, J. H.; Guerekata, G. M. N.; Minh, N. V., Topics on Stability and Periodicity in Abstract Differential Equations (2008), Singapore: Series on Concrete and Applicable Mathematics, Singapore
[23] Yoshizawa, T., Stability theory and the existence of periodic solutions and almost periodic solutions., Applied Mathematical Sciences (1975), New York, NY, USA: Springer-Verlag, New York, NY, USA · Zbl 0304.34051
[24] Cioranescu, I., Characterizations of almost periodic strongly continuous cosine operator functions, Journal of Mathematical Analysis and Applications, 116, 1, 222-229 (1986) · Zbl 0604.47026
[25] Arendt, W.; Batty, C. J. K., Almost periodic solutions of first- and second-order Cauchy problems, Journal of Differential Equations, 137, 2, 363-383 (1997) · Zbl 0879.34046
[26] Avakian, A. S., Almost periodic functions and the vibrating membrane, Journal of Mathematics and Physics, 14, 1-4, 350-378 (1935) · Zbl 0013.26301
[27] Ayachi, M.; Blot, J.; Cieutat, P., Almost periodic solutions of monotone second-order differential equations, Advanced Nonlinear Studies, 11, 541-555 (2011) · Zbl 1229.34094
[28] Berezansky, Y. M., On generalized almost periodic functions and sequences, related with the difference-differential equations, Matematicheskii Sbornik, 32, 157-194 (1953), (in Russian)
[29] Henríquez, H. R.; Pierri, M.; Rolnik, V., Pseudo S-asymptotically periodic solutions of second-order abstract Cauchy problems, Applied Mathematics and Computation, 274, 590-603 (2016) · Zbl 1410.34128
[30] Rao, A. S., On the Stepanov almost periodic solution of a second-order infinitesimal generator differential equation, International Journal of Mathematics and Mathematical Sciences, 14, 4, 757-761 (1991) · Zbl 0756.34062
[31] Sobolev, S. L., On almost periodicity for solutions of a wave equation. I-III, Doklady Akademii Nauk, 48, 570-573 (1945)
[32] Yuan, R., Existence of almost periodic solutions of second order neutral delay differential equations with piecewise constant argument, Science in China Series A: Mathematics, 41, 3, 232-241 (1998) · Zbl 0908.34054
[33] Zaidman, S., Spectrum of almost-periodic solutions for some abstract differential equations, Journal of Mathematical Analysis and Applications, 28, 2, 336-338 (1969) · Zbl 0187.08901
[34] Diagana, T.; Hassan, J. H.; Messaoudi, S. A., Existence of Asymptotically Almost Periodic Solutions for Some Second-Order Hyperbolic Integrodifferential Equations (2021), Berlin, Germany: Semigroup Forum in press, Berlin, Germany · Zbl 1466.45008
[35] Prüss, J., Evolutionary Integral Equations and Applications (1993), Basel, Switzerland: Birkhäuser-Verlag, Basel, Switzerland · Zbl 0793.45014
[36] Vu, Q.-P., Almost periodic solutions of Volterra equations, Differential Integral Equations, 7, 1083-1093 (1994) · Zbl 0812.45010
[37] Mu, J.; Zhoa, Y.; Peng, L., Periodic solutions and S-asymptotically periodic solutions to fractional evolution equations, Discrete Dynamics in Nature and Society, 2017 (2017) · Zbl 1373.34014
[38] Agarwal, R. P.; Andrade, B. d.; Cuevas, C., On type of periodicity and ergodicity to a class of fractional order differential equations, Advances in Difference Equations, 2010 (2010) · Zbl 1194.34007
[39] Bedi, P.; Kumar, A.; Kumar, A.; Abdeljawad, T.; Khan, A., S-asymptotically periodic mild solutions and stability analysis of Hilfer fractional evolution equations, Evolution Equations & Control Theory (2019), in press
[40] Brindle, D.; Guérékata, G. M. N. ’., S-asymptotically \(\omega \) -periodic mild solutions to fractional differential equations, Electronic Journal of Differential Equations, 30, 1-12 (2020) · Zbl 1451.34083
[41] Kostić, M., Abstract Degenerate Volterra Integro-Differential Equations (2020), Belgrade, Serbia: Mathematical Institute SANU, Belgrade, Serbia
[42] Ponce, R., Bounded mild solutions to fractional integro-differential equations in Banach spaces, Semigroup Forum, 87, 2, 377-392 (2013) · Zbl 1285.34071
[43] Abbas, S.; Kavitha, V.; Murugesu, R., Stepanov-like weighted pseudo almost automorphic solutions to fractional order abstract integro-differential equations, Proceedings - Mathematical Sciences, 125, 3, 323-351 (2015) · Zbl 1327.35391
[44] Chang, Y.; Luo, X., Pseudo almost automorphic behavior of solutions to a semi-linear fractional differential equation, Mathematical Communications, 20, 53-68 (2015) · Zbl 1335.34093
[45] Debbouche, A.; El-Borai, M. M., Weak almost periodic and optimal mild solutions of fractional evolution equations, Electronic Journal of Differential Equations, 46, 1-8 (2009) · Zbl 1171.34331
[46] Li, Q.; Wei, M.; Wei, M., Existence and asymptotic stability of periodic solutions for neutral evolution equations with delay, Evolution Equations & Control Theory, 9, 3, 753-772 (2020) · Zbl 1467.34075
[47] Min, Y.; Wang, Q., Pseudo asymptotically periodic solutions for fractional integro-differential neutral equations, Science China Math, 62, 1705-1718 (2019) · Zbl 1425.34088
[48] Xia, Z., Pseudo asymptotically periodic solutions of two-term time fractional differential equations with delay, Kodai Mathematical Journal, 38, 2, 310-332 (2015) · Zbl 1325.34089
[49] Zaidman, S., Almost-periodic functions in abstract spaces, Pitman Research Notes in Math (1985), Boston, MA, USA: Pitman, Boston, MA, USA · Zbl 0648.42006
[50] Barbu, V.; Favini, A., Periodic problems for degenerate differential equations, Rendiconti dell’Istituto di Matematica dell’Università di Trieste, 28, 29-57 (1997) · Zbl 0916.34042
[51] Prüss, J., On the spectrum of C 0 -semigroups, Transactions of the American Mathematical Society, 284, 2, 847-857 (1984) · Zbl 0572.47030
[52] Lizama, C.; Ponce, R., Periodic solutions of degenerate differential equations in vector-valued function spaces, Studia Mathematica, 202, 1, 49-63 (2011) · Zbl 1219.35129
[53] Ptashnic, B. I., Ill-Posed Boundary Value Problems for Partial Differential Equations (1984), Kiev, Ukraina: Naukova Dumka, Kiev, Ukraina, in Russian
[54] Vejvoda, O., Periodic solutions of a linear and weakly nonlinear wave equation in one dimension, I, Czechoslovak Mathematical Journal, 14, 3, 341-382 (1964) · Zbl 0178.45302
[55] Vejvoda, O.; Herrmann, L.; Lovicar, V.; contributors), Partial Differential Equations: Time-Periodic Solutions (1981), The Hague, Netherlands: Martinus Nijhoff Publishers, The Hague, Netherlands
[56] Berselli, L.; Bisconti, L., On the existence of almost-periodic solutions for the 2D dissipative Euler equations, Revista Matemática Iberoamericana, 31, 1, 267-290 (2015) · Zbl 1480.35315
[57] Berselli, L. C.; Romito, M., On Leray’s problem for almost periodic flows, Journal of Mathematical Sciences, the University of Tokyo, 19, 69-130 (2012) · Zbl 1329.35230
[58] Vetchanin, E. V.; Mikishanina, E. A.; Mikishanina, E. A., Vibrational stability of periodic solutions of the Liouville equations, Nelineinaya Dinamika, 15, 3, 351-363 (2019) · Zbl 1439.70006
[59] Myshkis, A. D., On certain problems in the theory of differential equations with deviating argument, Russian Mathematical Surveys, 32, 2, 181-213 (1977) · Zbl 0378.34052
[60] Dimbour, W.; Valmorin, V., Asymptotically antiperiodic solutions for a nonlinear differential equation with piecewise constant argument in a Banach space, Applied Mathematics, 07, 15, 1726-1733 (2016)
[61] Kostić, M.; Velinov, D., Asymptotically Bloch-periodic solutions of abstract fractional nonlinear differential inclusions with piecewise constant argument, Functional Analysis and Its Applications, 9, 27-36 (2017) · Zbl 1386.42002
[62] Chávez, A.; Castillo, S.; Pinto, M., Discontinuous almost periodic type functions, almost automorphy of solutions of differential equations with discontinuous delay and applications, Electronic Journal of Qualitative Theory of Differential Equations, 75, 75, 1-17 (2014) · Zbl 1324.47076
[63] Yuan, R.; Hong, J., The existence of almost periodic solutions for a class of differential equations with piecewise constant argument, Nonlinear Anal, 28, 1439-1450 (1997) · Zbl 0869.34038
[64] Cooke, K. L.; Wiener, J., Retarded differential equations with piecewise constant delays, Journal of Mathematical Analysis and Applications, 99, 1, 265-297 (1984) · Zbl 0557.34059
[65] Shah, S. M.; Wiener, J., Advanced differential equations with piecewise constant argument deviations, International Journal of Mathematics and Mathematical Sciences, 6, 4, 671-703 (1983) · Zbl 0534.34067
[66] Wiener, J., Generalized Solutions of Functional Differential Equations (1993), Singapore: World Scientific, Singapore · Zbl 0874.34054
[67] Ait Dads, E.; Lhachimi, L., Pseudo almost periodic solutions for equation with piecewise constant argument, Journal of Mathematical Analysis and Applications, 371, 2, 842-854 (2010) · Zbl 1206.34094
[68] Chiu, K.-S.; Pinto, M., Periodic solutions of differential equations with a general piecewise constant argument and applications, Electronic Journal of Qualitative Theory of Differential Equations, 46, 46, 1-19 (2010) · Zbl 1211.34082
[69] Chiu, K.-S.; Pinto, M.; Jeng, J.-C., Existence and global convergence of periodic solutions in recurrent neural network models with a general piecewise alternately advanced and retarded argument, Acta Applicandae Mathematicae, 133, 1, 133-152 (2014) · Zbl 1315.34073
[70] Muminov, M. I., On the method of finding periodic solutions of second-order neutral differential equations with piecewise constant arguments, Advances in Difference Equations, 336 (2017) · Zbl 1444.34097
[71] Papaschinopoulos, G., Some results concerning a class of differential equations with piecewise constant argument, Mathematische Nachrichten, 166, 1, 193-206 (1994) · Zbl 0830.34062
[72] Pinto, M., Cauchy and Green matrices type and stability in alternately advanced and delayed differential systems, Journal of Difference Equations and Applications, 17, 2, 235-254 (2011) · Zbl 1220.34082
[73] Yuan, R., The existence of almost periodic solutions of retarded differential equations with piecewise constant argument, Nonlinear Analysis: Theory, Methods & Applications, 48, 7, 1013-1032 (2002) · Zbl 1015.34058
[74] Guérékata, G. M. N.; Kostić, M., Generalized asymptotically almost periodic and generalized asymptotically almost automorphic solutions of abstract multi-term fractional differential inclusions, Abstract and Applied Analysis, 2018 (2018) · Zbl 1470.34124
[75] Diagana, T., Almost Automorphic Type and Almost Periodic Type Functions in Abstract Spaces (2013), Berlin, Germany: Springer, Berlin, Germany · Zbl 1279.43010
[76] Amerio, L.; Prouse, G., Almost Periodic Functions and Functional Equations (1971), New York, NY: Van Nostrand-Reinhold, New York, NY · Zbl 0215.15701
[77] Argabright, L. N.; de Lamadrid, J. G., Almost periodic measures, Memoirs of the American Mathematical Society, 428 (1990) · Zbl 0719.43006
[78] Baake, M.; Grimm, U., Aperiodic order, A Mathematical Invitation (2013), Cambridge, UK: Cambridge University Press, Cambridge, UK · Zbl 1295.37001
[79] Baake, M.; Grimm, U., Aperiodic order, Crystallography and Almost Periodicity (2017), Cambridge, UK: Cambridge University Press, Cambridge, UK
[80] Bezandry, P. H.; Diagana, T., Almost Periodic Stochastic Processes (2011), Berin, Germany: Springer, Berin, Germany · Zbl 1246.34056
[81] Böttcher, A.; Karlovich, I. Y.; Spitkovsky, I. M., Convolution Operators and Factorization of Almost Periodic Matrix Functions (2002), Basel, Switzerland: Birkhäuser-Verlag, Basel, Switzerland · Zbl 1011.47001
[82] Böttcher, A., On the corona theorem for almost periodic functions, Integral Equations Operator Theory, 33, 253-272 (1999) · Zbl 0931.46036
[83] Boggiatto, P.; Fernández, C.; Galbis, A., Gabor systems and almost periodic functions, Applied and Computational Harmonic Analysis, 42, 1, 65-87 (2017) · Zbl 1357.42030
[84] Kim, Y. H., Representations of almost-periodic functions using generalized shift-invariant systems in R^d, Journal of Fourier Analysis and Applications, 19, 4, 857-876 (2013) · Zbl 1304.42092
[85] Chang, Y.-K.; Guerekata, G. M. N.; Ponce, R., Bloch-type periodic functions: theory and applications to evolution equations (2021)
[86] Cheban, D. N., Asymptotically Almost Periodic Solutions of Differential Equations (2009), London, UK: Hindawi Publishing Corporation, London, UK · Zbl 1222.34002
[87] Emel’yanov, E. Yu., Non-Spectral Asymptotic Analysis of One-Parameter Operator Semigroups (2007), Basel, Switzerland: Birkhäuser-Verlag, Basel, Switzerland · Zbl 1117.47001
[88] Hino, Y.; Naito, T.; Minh, N. V.; Shin, J. S., Almost periodic solutions of differential equations in Banach spaces, Stability and Control: Theory, Methods and Applications, 15 (2002)
[89] Guérékata, G. M. N. ’., Spectral Theory of Bounded Functions and Applications to Evolution Equations (2017), New York, NY, USA: Nova Science Publishers, New York, NY, USA
[90] Massera, J. L., The existence of periodic solutions of systems of differential equations, Duke Mathematical Journal, 17, 457-475 (1950) · Zbl 0038.25002
[91] Hsu, R., Topics on Weakly Almost Periodic Functions (1985), New York, NY, USA: State University of New York at Buffalo, New York, NY, USA
[92] Stamov, G. T., Almost Periodic Solutions of Impulsive Differential Equations (2012), Berlin. Germany: Springer-Verlag, Berlin. Germany · Zbl 1255.34001
[93] Bainov, D.; Simeonov, P., Impulsive differential equations: periodic solutions and applications, Pitman Monographs and Surveys in Pure and Applied Mathematics; Longman Scientific and Technical,, 66 (1993) · Zbl 0815.34001
[94] Perestyuk, N. A.; Plotnikov, V. A.; Somoilenko, A. M.; Skripnik, N. V., Differential Equations with Impulsive Effects. Multivalued Right-Hand Sides with Discontinuities (2011), Berlin, Germany: De Gruyter, Berlin, Germany · Zbl 1234.34002
[95] Stamova, I.; Stamov, G., Applied Impulsive Mathematical Models (2016), Berlin, Germany: Springer International Publishing, Berlin, Germany · Zbl 1355.34004
[96] Song, X.; Gno, H.; Shi, X., Theory and Applications of Impulsive Differential Equations (2011), Beijing, China: Science Press, Beijing, China
[97] Acquistapace, P., Evolution operators and strong solutions of abstract linear parabolic equations, Differential Integral Equations, 1, 433-457 (1988) · Zbl 0723.34046
[98] Acquistapace, P.; Terreni, B., A uniffied approach to abstract linear nonautonomous parabolic equations, Rendiconti del Seminario Matematico della Università di Padova, 78, 47-107 (1987) · Zbl 0646.34006
[99] Chang, Y.-H.; Chen, J.-S., The almost periodic solutions of nonautonomous abstract differential equations, Chinese Journal of Mathematics, 23, 257-274 (1995) · Zbl 0832.34053
[100] Khalil, K., On the almost periodicity of nonautonomous evolution equations and application to lotka-voltera systems (2020), https://arxiv.org/abs/2007.01143
[101] Schnaubelt, R.; Lumer, G.; Weis, L., A sufficient condition for exponential dichotomy of parabolic evolution equations, Evolution Equations and Their Applications in Physical and Life Sciences (Proceedings Bad Herrenalb, 1998), 149-158 (2000), New York, NY, USA: Marcel Dekker, New York, NY, USA
[102] Zhikov, V. V., Abstract equations with almost-periodic coefficients, Doklady Akademii Nauk, 163, 555-558 (1965) · Zbl 0144.17802
[103] Zhikov, V. V., Almost periodic solutions of differential equations in Hilbert space, Doklady Akademii Nauk, 165, 1227-1230 (1965)
[104] Baroun, M.; Maniar, L.; Schnaubelt, R., Almost periodicity of parabolic evolution equations with inhomogeneous boundary values, Integral Equations and Operator Theory, 65, 2, 169 (2009) · Zbl 1197.47055
[105] Baroun, M.; Ezzinbi, K.; Khalil, K.; Maniar, L., Almost automorphic solutions for nonautonomous parabolic evolution equations, Semigroup Forum, 99, 3, 525-567 (2019) · Zbl 1471.35018
[106] Zakora, D. A., Abstract linear Volterra second-order integro-differential equations, Eurasian Mathematical Journal, 7, 75-91 (2016) · Zbl 1474.45024
[107] Bochner, M.; Peterson, A., Dynamic Equations on Time Scales. An Introduction with Applications (2001), Boston, MA, USA: Birkhäuser Boston, Boston, MA, USA
[108] Alvarez, E.; Castillo, S.; Pinto, M., \( \left( \omega , c\right)\) -Pseudo periodic functions, first order Cauchy problem and Lasota-Wazewska model with ergodic and unbounded oscillating production of red cells. Bound, Value Problems, 106, 1-20 (2019)
[109] Alvarez, E.; Gómez, A.; Pinto, M., (ω, c) -periodic functions and mild solutions to abstract fractional integro-differential equations, Electronic Journal of Qualitative Theory of Differential Equations, 16, 16, 1-8 (2018) · Zbl 1413.34220
[110] Alvarez, E.; Castillo, S.; Pinto, M., (ω, c)‐asymptotically periodic functions, first‐order Cauchy problem, and Lasota‐Wazewska model with unbounded oscillating production of red cells, Mathematical Methods in the Applied Sciences, 43, 1, 305-319 (2020) · Zbl 1451.34047
[111] Wazewska-Czyzewska, M.; Lasota, A., Mathematical problems of the red-blood cell system, Applied Mathematics, 6, 23-40 (1976)
[112] Wang, J. R.; Ren, L.; Zhou, Y., Periodic solutions for time varying impulsive differential equations, Advances in Difference Equations, 259 (2019) · Zbl 1459.34161
[113] Mophou, G.; Guérékata, G. M. N.; Milce, A., An Existence Result of,periodic mild solutions to some fractional differential equation, Nonlinear Studies, 27 (2020), In press
[114] Li, M.; Wang, J.-R.; Fečkan, M., Periodic solutions for impulsive differential systems, Communications in Mathematical Analysis, 21, 35-45 (2018) · Zbl 1410.34049
[115] Ait Dads, E.; Ezzinbi, K.; Arino, O., Pseudo almost periodic solutions for some differential equations in a Banach space, Nonlinear Anal, 28, 1145-1155 (1997) · Zbl 0874.34041
[116] Blot, J.; Cieutat, P.; Ezzinbi, K., New approach for weighted pseudo-almost periodic functions under the light of measure theory, basic results and applications, Applicable Analysis, 65, 1-34 (2011)
[117] Blot, J.; Cieutat, P.; Ezzinbi, K., Measure theory and pseudo almost automorphic functions: new developments and applications, Nonlinear Analysis: Theory, Methods & Applications, 75, 4, 2426-2447 (2012) · Zbl 1248.43004
[118] Coronel, A.; Pinto, M.; Sepúlveda, D., Weighted pseudo almost periodic functions, convolutions and abstract integral equations, Journal of Mathematical Analysis and Applications, 435, 2, 1382-1399 (2016) · Zbl 1337.42003
[119] Diagana, T., Pseudo Almost Periodic Functions in Banach Spaces (2007), New York, NY, USA: Nova Science Publishers, New York, NY, USA · Zbl 1234.43002
[120] Diagana, T., Weighted pseudo almost periodic functions and applications, Comptes Rendus Mathematique, 343, 10, 643-646 (2006) · Zbl 1112.43005
[121] Diagana, T., Existence of almost periodic solutions to some third-order nonautonomous differential equations, Electronic Journal of Qualitative Theory of Differential Equations, 28, 65, 1-14 (2011) · Zbl 1340.34156
[122] Diagana, T., Existence of doubly-weighted pseudo almost periodic solutions to non-autonomous differential equations, African Diaspora Journal of Mathematic, 12, 121-136 (2011) · Zbl 1247.42008
[123] Ji, D.; Zhang, C., Translation invariance of weighted pseudo almost periodic functions and related problems, Journal of Mathematical Analysis and Applications, 391, 2, 350-362 (2012) · Zbl 1245.43003
[124] Liang, J.; Xiao, T.-J.; Zhang, J., Decomposition of weighted pseudo-almost periodic functions, Nonlinear Analysis: Theory, Methods & Applications, 73, 10, 3456-3461 (2010) · Zbl 1198.43004
[125] Zhang, C., Pseudo almost periodic functions and their applications (1992), London, UK: The University of Western Ontario, London, UK, PhD. Thesis
[126] Zhang, C. Y., Pseudo almost periodic solutions of some differential equations, Journal of Mathematical Analysis and Applications, 181, 1, 62-76 (1994) · Zbl 0796.34029
[127] Zhang, C. Y., Pseudo almost periodic solutions of some differential equations, II, Journal of Mathematical Analysis and Applications, 192, 2, 543-561 (1995) · Zbl 0826.34040
[128] Zhang, J.; Xiao, T.-J.; Liang, J., Weighted pseudo almost periodic functions and applications to semilinear evolution equations, Abstract and Applied Analysis, 2012 (2012) · Zbl 1244.34083
[129] Zhang, L.; Xu, Y., Weighted pseudo-almost periodic solutions of a class of abstract differential equations, Nonlinear Analysis: Theory, Methods & Applications, 71, 9, 3705-3714 (2009) · Zbl 1173.34041
[130] Zhang, L.-L.; Li, H.-X., Weighted pseudo-almost periodic solutions for some abstract differential equations with uniform continuity, Bulletin of the Australian Mathematical Society, 82, 3, 424-436 (2010) · Zbl 1213.34064
[131] Favorov, S. J., Zeros of holomorphic almost periodic functions, Journal d’Analyse Mathématique, 84, 1, 51-66 (2001) · Zbl 0998.30007
[132] Jessen, B., Some aspects of the theory of almost periodic functions, Proceedings of the . Internat. Congress Mathematicians
[133] Sepulcre, J. M.; Vidal, T., Almost periodic functions in terms of Bohr’s equivalence relation, The Ramanujan Journal, 46, 1, 245-267 (2018) · Zbl 1391.30043
[134] Sepulcre, J. M.; Vidal, T., Sets of values of equivalent almost periodic functions, The Ramanujan Journal (2021), In press · Zbl 1457.42016
[135] Borchsenius, V.; Jessen, B., Mean motions and values of the Riemann zeta function, Acta Mathematica, 80, 97-166 (1948) · Zbl 0038.23201
[136] Mora, G.; Sepulcre, J. M., On the distribution of zeros of a sequence of entire functions approaching the Riemann zeta function, Journal of Mathematical Analysis and Applications, 350, 1, 409-415 (2009) · Zbl 1167.30015
[137] Favorov, S.; Udodova, O., Almost periodic functions in finite-dimensional space with the spectrum in a cone. preprint (2019), https://arxiv.org/abs/astro-ph/0701820 · Zbl 1093.32001
[138] Favorov, S. Y.; Rakhnin, A. V., Subharmonic almost periodic functions, Journal of Mathematical Physics, Analysis, Geometry., 2, 209-224 (2005) · Zbl 1099.31002
[139] Favorov, S. Yu.; Rakhnin, A. V., Subharmonic almost periodic functions of slowth growth, Journal of Mathematical Physics, Analysis, Geometry, 1, 109-127 (2007) · Zbl 1213.31001
[140] Favorov, S. Y.; Rashkovskii, A. Y., Holomorphic almost periodic functions, Acta Applicandae Mathematicae, 65, 1/3, 217-235 (2001) · Zbl 1008.42008
[141] Adamczak, M., \( C^{\left( n\right)}\) -almost periodic functions, Commentationes Mathematicae (Prace Matematyczne), 37, 1-12 (1997) · Zbl 0896.42004
[142] Diagana, T.; Nelson, V.; Guérékata, G. M. N., Almost automorphic mild solutions to some classes of nonautonomous higher-order differential equations, Semigroup Forum, 82, 3, 455-477 (2011) · Zbl 1229.34095
[143] Kostić, M., Weyl-almost periodic solutions and asymptotically Weyl-almost periodic solutions of abstract Volterra integro-differential equations, Banach Journal of Mathematical Analysis, 13, 64-90 (2019) · Zbl 1408.43005
[144] Kostić, M., Asymptotically Weyl almost periodic functions in Lebesgue spaces with variable exponents, Journal of Mathematical Analysis and Applications, 498, 1, 2021, In press · Zbl 1459.42008
[145] Kostić, M., Multi-dimensional -almost Periodic Type Functions and Applications (2020)
[146] Kostić, M.; Du, W.-S., Generalized almost periodicity in Lebesgue spaces with variable exponents, Mathematics, 8, 6, 928 (2020)
[147] Kostić, M.; Du, W.-S., Generalized almost periodicity in Lebesgue spaces with variable exponents, Part II, Mathematics, 8, 7, 1052 (2020)
[148] Lucchetti, R.; Patrone, F., On Nemytskii’s operator and its application to the lower semicontinuity of integral functionals, Indiana University Mathematics Journal, 29, 5, 703-713 (1980) · Zbl 0476.47049
[149] Blot, J.; Cieutat, P.; Guérékata, G. M. N.; Pennequin, D., Superposition operators between various almost periodic function spaces and applications, Communications in Mathematical Analysis, 6, 42-70 (2009) · Zbl 1179.47055
[150] Cieutat, P., Nemytskii operators between stepanov almost periodic or almost automorphic function spaces (2019), https://arxiv.org/abs/1910.09389
[151] Hillmann, T. R., Besicovitch-Orlicz spaces of almost periodic functions, Real and Stochastic Analysis (1986), Hoboken , NJ, USA: Wiley, Hoboken , NJ, USA · Zbl 0656.46020
[152] Morsli, M.; Smaali, M., Characterization of the strict convexity of the Besicovitch-Musielak-Orlicz space of almost periodic functions, Commentationes Mathematicae Universitatis Carolinae, 48, 443-458 (2007) · Zbl 1199.46045
[153] Bedouhene, F.; Djabri, Y.; Boulahia, F., Ergodicity in stepanov-orlicz spaces, Annals of Functional Analysis, 11, 1-17 (2019) · Zbl 1443.46019
[154] Haraux, A.; Komornik, V., Density theorems for almost periodic functions: a Hilbert space approach, Journal of Mathematical Analysis and Applications, 122, 538-554 (1987) · Zbl 0619.35065
[155] Akhmet, M., Almost periodicity, chaos, and asymptotic equivalence, Nonlinear Systems and Complexity, 27 (2020) · Zbl 07181625
[156] Kostić, M., Chaos for Linear Operators and Abstract Differential Equations (2020), New York, NY, USA: Nova Science Publishers, New York, NY, USA
[157] Abbas, S.; Dhama, S.; Pinto, M.; Sepúlveda, D., Pseudo compact almost automorphic solutions for a family of delayed population model of Nicholson type, Journal of Mathematical Analysis and Applications, 495, 1 (2021) · Zbl 1465.34076
[158] Ding, H.-S.; Liu, Q.-L.; Nieto, J. J., Existence of positive almost periodic solutions to a class of hematopoiesis model, Applied Mathematical Modelling, 40, 4, 3289-3297 (2016) · Zbl 1452.92006
[159] Zhang, H.; Yang, M.; Wang, L., Existence and exponential convergence of the positive almost periodic solution for a model of hematopoiesis, Applied Mathematics Letters, 26, 1, 38-42 (2013) · Zbl 1253.92012
[160] Mackey, M.; Glass, L., Oscillation and chaos in physiological control systems, Science, 197, 4300, 287-289 (1977) · Zbl 1383.92036
[161] Mycielski, J., On a problem of interpolation by periodic functions, Colloquium Mathematicum, 8, 1, 95-97 (1961) · Zbl 0102.05302
[162] Lipiński, J. S., Sur un problème de E. Marczewski concernant les fonctions périodiques, Bulletin L’Académie Polonaise des Science, 8, 695-697 (1960), in French · Zbl 0134.04404
[163] Hartman, S., On interpolation by almost periodic functions, Colloquium Mathematicum, 8, 1, 99-101 (1961) · Zbl 0103.05303
[164] Hartman, S.; Ryll-Nardzewski, C., Almost periodic extensions of functions, Colloquium Mathematicum, 12, 1, 23-39 (1964) · Zbl 0145.32101
[165] Hartman, S.; Ryll-Nardzewski, C., Almost periodic extensions of functions, II, Colloquium Mathematicum, 15, 1, 79-86 (1966) · Zbl 0145.32102
[166] Hartman, S.; Ryll-Nardzewski, C., Almost periodic extensions of functions, III, Colloquium Mathematicum, 16, 1, 223-224 (1967) · Zbl 0152.27902
[167] Strzelecki, E., On a problem of interpolation by periodic and almost periodic functions, Colloquium Mathematicum, 11, 1, 91-99 (1963) · Zbl 0114.28501
[168] Hartman, S., Remark on interpolation by L-almost periodic functions, Colloquium Mathematicum, 30, 1, 133-136 (1974) · Zbl 0285.43012
[169] Besicovitch, A. S., Almost Periodic Functions (1954), New York, NY, USA: Dover Publications, New York, NY, USA
[170] Pankov, A. A., Bounded and Almost Periodic Solutions of Nonlinear Operator Differential Equations (1990), Dordrecht, Netherlands: Kluwer Academic Publishers, Dordrecht, Netherlands · Zbl 0712.34001
[171] Rodman, L.; Spitkovsky, I. M.; Woerdeman, H. J., Contractive extension problems for matrix valued almost periodic functions of several variables, Journal of Operator Theory, 47, 3-35 (2002) · Zbl 1025.42011
[172] Rodman, L.; Spitkovsky, I. M., Algebras of almost periodic functions with Bohr-Fourier spectrum in a semigroup: hermite property and its applications, Journal of Functional Analysis, 255, 3188-3207 (2011) · Zbl 1158.43008
[173] Rodman, L.; Spitkovsky, I. M.; Woerdeman, H. J., Multiblock problems for almost periodic matrix functions of several variables, New York Journal of Mathematics, 7, 117-148 (2001) · Zbl 1009.42014
[174] Meyer, Y., Mean-periodic functions and irregular sampling, Transactions of the Royal Society, 1, 5-23 (2018)
[175] Kahane, J.-P., Lectures on Mean Periodic Functions (1959), Bombay, India: Tata Institute of Fundamental Research, Bombay, India · Zbl 0099.32301
[176] Basit, R. B., Generalization of two theorems of M. I. Kadets concerning the indefinite integral of abstract almost periodic functions, Mathematical Notes of the Academy of Sciences of the USSR, 9, 3, 181-186 (1971) · Zbl 0228.43011
[177] Alsulami, S. M. A., On the integral of almost periodic functions of several variables, Applied Mathematical Sciences, 6, 3615-3622 (2012) · Zbl 1262.42003
[178] Khasanov, Y. K., On approximation of almost periodic functions of two real variables, Russian Mathematics (Izvestiya VUZ. Matematika), 12, 82-86 (2010), in Russian
[179] Khasanov, Y. K., Absolute convergence of Fourier series of almost-periodic functions, Mathematical Notes, 94, 5-6, 692-702 (2013) · Zbl 1285.42006
[180] Khasanov, Y. K., On deviation of harmonic almost periodic functions from their boundary values, Vladikavkaz Mathematical Journal, 17, 80-85 (2015) · Zbl 1474.42032
[181] Khasanov, Y. K., On absolute Cesáro summablity of Fourier series for almost-periodic functions with limiting points at zero, Ufa Mathematical Journal, 8, 147-155 (2016), in Russian · Zbl 1463.42008
[182] Khasanov, Y. K., On approximation of almost periodic functions by some sums, Vladikavkaz Mathematical Journal, 19, 76-85 (2017), in Russian · Zbl 1479.42025
[183] Khasanov, Y.; Safarzoda, E.; Safarzoda, E., On approximation of Stepanov’s almost periodic functions by means of Marcinkiewicz, Vestnik Volgogradskogo Gosudarstvennogo Universiteta. Serija 1. Mathematica. Physica, 6, 6, 61-69 (2016), in Russian
[184] Latif, M. A.; Bhatti, M. I., Almost periodic functions defined on !^n with values in fuzzy setting, Punjab University Journal of Mathematics (Lahore), 39, 19-27 (2007) · Zbl 1226.42003
[185] Latif, M. A.; Bhatti, M. I., Almost periodic functions defined on !n with values in locally convex spaces, Journal of Prime Research in Mathematics, 4, 181-194 (2008) · Zbl 1214.43011
[186] Guérékata, G. M. N.; Latif, M. A.; Bhatti, M. I., Almost periodic functions defined \(\mathbb{R}^n\) on with values in \(p\) - Fréchet spaces, \(0<p<1\), Libertas Math, 29, 83-100 (2009) · Zbl 1192.05078
[187] Sell, G. R., Almost periodic solutions of linear partial differential equations, Journal of Mathematical Analysis and Applications, 42, 2, 302-312 (1973) · Zbl 0262.35003
[188] Sell, G. R., A note on almost periodic solutions of linear partial differential equations, Bulletin of the American Mathematical Society, 79, 2, 428-431 (1973) · Zbl 0266.35022
[189] Fink, A. M., Almost Periodic Differential Equations (1974), Berlin, Germany: Springer, Berlin, Germany · Zbl 0325.34039
[190] Bao-Ping, L.; Pao, C. V., Almost periodic plane wave solutions for reaction diffusion equations, Journal of Mathematical Analysis and Applications, 105, 1, 231-249 (1985) · Zbl 0568.35050
[191] Alsulami, S. M. A., On evolution equations in banach spaces and commuting semigroups (2005), Athens, OH, USA: Ohio University, Athens, OH, USA, PhD. Thesis
[192] Spradlin, G., An almost periodic function of several variables with no local minimum, Rendiconti dell’Istituto di Matematica dell’Università di Trieste, 28, 371-381 (1996) · Zbl 0886.42020
[193] Spradlin, G., A singularly perturbed elliptic partial differential equation with an almost periodic term, Calculus of Variations and Partial Differential Equations, 9, 207-232 (1996) · Zbl 0952.35022
[194] Spradlin, G., An elliptic partial differential equation with a symmetrical almost periodic term, Calculus of Variations and Partial Differential Equations, 9, 233-247 (1996) · Zbl 0952.35040
[195] Ptashnic, B. I.; Shtabalyuk, P. I., A boundary value problem for hyperbolic equations in a class of functions that are almost periodic with respect to space variables, Differentsialnye Uravneniya, 22, 669-678 (1986), in Russian
[196] Yang, F.; Zhang, C., Remotely almost periodic solutions to parabolic inverse problems, Taiwanese Journal of Mathematics, 15, 43-57 (2011) · Zbl 1229.35330
[197] Basit, B., Some problems concerning different types of vector valued almost periodic functions, Dissertationes Mathematics, 338 (1995) · Zbl 0828.43004
[198] Dumitrescu, B., Positive Trigonometric Polynomials and Signal Processing Applications (2017), Berlin, Germany: Springer International Publishing, Berlin, Germany · Zbl 1368.94001
[199] Dung, D.; Temlyakov, V.; Ullrich, T., Hyperbolic cross approximation, Advanced Courses in Mathematics (2018), Basel, Switzerland: CRM Barcelona, Basel, Switzerland
[200] Temlyakov, V., Approximation of Periodic Functions (1993), New York, NY, USA: Nova Science Publishers, New York, NY, USA · Zbl 0899.41001
[201] Temlyakov, V., Multivariate Approximation (2018), Cambridge, UK: Cambridge University Press, Cambridge, UK · Zbl 1428.41001
[202] Temlyakov, V. N., Greedy algorithm and m -term trigonometric approximation, Constructive Approximation, 14, 4, 569-587 (1998) · Zbl 0931.42002
[203] Babayev, A. M.-B., Approximations of periodic functions of two variables by trigonometric polynomials, Transactions Issue Mathematics, Azerbaijan, 34, 21-28 (2014) · Zbl 1332.42015
[204] Pfister, L.; Bresler, Y., Bounding multivariate trigonometric polynomials, IEEE Transactions on Signal Processing, 67, 3, 700-707 (2019) · Zbl 1414.42002
[205] Kämmerer, L.; Potts, D.; Volkmer, T., Approximation of multivariate periodic functions by trigonometric polynomials based on rank-1 lattice sampling, Journal of Complexity, 31, 4, 543-576 (2015) · Zbl 1320.65204
[206] Coburn, L. A.; Moyer, R. D.; Singer, I. M., C∗-algebras of almost periodic pseudo-differential operators, Acta Mathematica, 130, 279-307 (1973) · Zbl 0263.47042
[207] Dedik, P. E., Theorems on the boundedness of almost-periodic pseudodifferential operators, Siberian Mathematical Journal, 22, 361-369 (1981) · Zbl 0486.35083
[208] Iannacci, R.; Bersani, A. M.; Dell’Acqua, G.; Santucci, P., Embedding theorems for Sobolev-Besicovitch spaces of almost periodic functions, Zeitschrift für Analysis und ihre Anwendungen, 17, 2, 443-457 (1998) · Zbl 0904.42007
[209] Pankov, A. A., Theory of almost-periodic pseudodifferential operators, Ukrainian Mathematical Journal, 33, 469-472 (1981) · Zbl 0475.49017
[210] Shubin, M. A., Differential and pseudodifferential operators in spaces of almost periodic functions, Matematicheskii Sbornik, 95, 560-587 (1974) · Zbl 0311.47022
[211] Shubin, M. A., Theorems on the coincidence of the spectra of an almost periodic pseudodifferential operator in the spaces L^2(!^n) and B^2(!^n), Siberian Mathematical Journal, 17, 200-215 (1976) · Zbl 0334.47037
[212] Shubin, M. A., Pseudodifferential almost-periodic operators and von Neumann algebras, Siberian Mathematical Journal, 35, 103-163 (1976) · Zbl 0423.47020
[213] Shubin, M. A., Almost periodic functions and partial differential equations, Uspekhi Matematicheskikh Nauk, 33, 3-47 (1978) · Zbl 0408.47039
[214] Wahlberg, P., A transformation of almost periodic pseudodifferential operators to Fourier multiplier operators with operator-valued symbols, Rendiconti del Seminario Matematico Università e Politecnico di Torino, 67, 247-269 (2009) · Zbl 1197.47064
[215] Oliaro, A.; Rodino, L.; Wahlberg, P., Almost periodic pseudodifferential operators and Gevrey classes, Annali di Matematica Pura ed Applicata, 191, 4, 725-760 (2012) · Zbl 1253.35233
[216] Area, I.; Losada, J.; Nieto, J. J., On quasi-periodic properties of fractional sums and fractional differences of periodic functions, Applied Mathematics and Computation, 273, 190-200 (2016) · Zbl 1410.39022
[217] Jonnalagadda, J. M., Quasi-periodic solutions of fractional nabla difference systems, Fractional Differential Calculus, 7, 2, 339-355 (2017) · Zbl 1438.39014
[218] Khalladi, M. T.; Kostić, M.; Pinto, M.; Rahmani, A.; Velinov, D., c-Almost periodic type functions and applications, Nonautonomous Dynamical Systems, 7, 1, 176-193 (2020)
[219] Chávez, A.; Khalil, K.; Kostić, M.; Pinto, M., Multi-dimensional almost periodic type functions and applications. preprint (2020), https://arxiv.org/abs/2012.00543
[220] Chávez, A.; Khalil, K.; Kostić, M.; Pinto, M., Stepanov multi-dimensional almost periodic type functions and applications (2020)
[221] Chávez, A.; Khalil, K.; Kostić, M.; Pinto, M., Multi-dimensional almost automorphic type functions and applications (2021)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.