×

Inheritance of smoothness by extremal functions in Bergman spaces \(A_p\) for \(0<p<\infty \). (English. Russian original) Zbl 1476.30169

Math. Notes 110, No. 2, 167-185 (2021); translation from Mat. Zametki 110, No. 2, 170-191 (2021).
Summary: We study the problem of how extremal functions for linear functionals over a Bergman space are influenced by the properties of the functions generating these functionals. For different classes of generating functions, we obtain a sufficiently exact description of qualitative properties of the corresponding extremal functions. The method developed here can be used to study similar problems in Hardy spaces.

MSC:

30H20 Bergman spaces and Fock spaces
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Kantorovich, L. V.; Akilov, G. P., Functional Analysis (1984), Moscow: Nauka, Moscow · Zbl 0555.46001
[2] Ryabykh, V. G., Some extremum problems in the space \(H_p'\), Series of Exact and Natural Sciences: Scientific Reports in 1964, 0, 33-34 (1964)
[3] Ryabykh, V. G., Extremum problems for integrable analytic functions, Sibirsk. Mat. Zh., 27, 3, 212-217 (1986) · Zbl 0622.30032
[4] Khavinson, D.; Shapiro, H. S., Best approximation in the supremum norm by analytic and harmonic functions, Ark. Math., 39, 339-359 (2001) · Zbl 1134.41320
[5] Beneteau, C.; Khavinson, D., A survey of linear extremal problems in analytic function spaces, CRM Proc. Lecture Notes, Vol. 55: Complex Analysis and Potential Theory, 0, 33-46 (2012) · Zbl 1316.30048
[6] Ferguson, T., Extremal Problems in Bergman Spaces and Extension of Ryabykh’s Theorem (2011), Michigan: Univ. of Michigan, Michigan · Zbl 1276.30062
[7] Zakharyuta, V. P.; Yudovich, V. I., General form of a linear functional in \(H_p'\), Uspekhi Mat. Nauk, 19, 2-116, 139-142 (1964) · Zbl 0128.34305
[8] Goluzin, G. M., Geometric Theory of Functions of a Complex Variable (1952), Moscow-Leningrad: Gostekhizdat, Moscow-Leningrad · Zbl 0049.05902
[9] Burchaev, Kh. Kh.; Ryabykh, V. G., General Form of a Bounded Linear Functional in Metric Space \(H_p', 0<p<1 (1975)\), Moscow: VINITI, Moscow
[10] Garnett, J., Bounded Analytic Functions (1981), New York: Academic Press, New York · Zbl 0469.30024
[11] Kh. Kh. Burchaev, V. G. Ryabykh, and G. Yu. Ryabykh, “Some properties of extremal functions in Hardy and Bergman spaces,” in Results of Science. South of Russia, Research in Mathematical Analysis (Izd. YuMI VNTs RAN, RSO-A, Vladikavkaz, 2015), Vol. 9, pp. 125-139. · Zbl 1375.30082
[12] Ryabykh, V. G., Approximation of non-analytic functions by analytic ones, Sb. Math., 197, 2, 225-233 (2006) · Zbl 1148.46302
[13] Burchaev, Kh. Kh.; Ryabykh, G. Yu., Properties of extremal elements in duality relations for Hardy spaces, Vladikavk. Mat. Zh., 20, 4, 5-19 (2018) · Zbl 1463.47049
[14] Burchaev, Kh. Kh.; Ryabykh, V. G.; Ryabykh, G. Yu., Integro-Differential Operators in Spaces of Analytic Functions and Some Applications (2014), Rostov on Don: Izd. ITs DGTU, Rostov on Don · Zbl 1375.30082
[15] Kh. Kh. Burchaev, V. G. Ryabykh and G. Yu. Ryabykh, “Analyticity in \(\mathbb C\) of extremal functions of the functional generated by a polynomial over a Bergman space, Pt. 1,” in Results of Science. South of Russia, Research in Mathematical Analysis (Izd. YuMI VNTs RAN, RSO-A, Vladikavkaz, 2014), Vol. 8, pp. 204-214. · Zbl 1375.30082
[16] Burchaev, Kh. Kh.; Ryabykh, V. G.; Ryabykh, G. Yu., An extremal problem in the Hardy space \(H_p\) for \(0<p<\infty \), Sib. Math. J., 58, 3, 392-404 (2017) · Zbl 1375.30082
[17] Burchaev, Kh. Kh.; Ryabykh, G. Yu., Approximation of non-analytic functions by analytical ones, Russian Math. (Izv. VUZ), 63, 1, 14-23 (2019) · Zbl 1433.30120
[18] Iosida, K., Functional Analysis (1966), Berlin-Heidelberg: Springer, Berlin-Heidelberg
[19] Duren, P. L.; Romberg, B. W.; Shields, A. L., Linear functionals on \(H_p\) space with \(0<p<1\), J. Reine Angew. Math., 238, 32-60 (1969) · Zbl 0176.43102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.