×

On planar polynomial geometric interpolation. (English) Zbl 1520.41002

Summary: In the paper, the planar polynomial geometric interpolation of data points is revisited. Simple sufficient geometric conditions that imply the existence of the interpolant are derived in general. They require data points to be convex in a certain discrete sense. Since the geometric interpolation is based precisely on the known data only, one may consider it as the parametric counterpart to the polynomial function interpolation. The established result confirms the Höllig-Koch conjecture on the existence and the approximation order in the planar case for parametric polynomial curves of any degree stated quite a while ago.

MSC:

41A10 Approximation by polynomials
65D05 Numerical interpolation
65D17 Computer-aided design (modeling of curves and surfaces)
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Brysiewicz, T., Necklaces count polynomial parametric osculants, J. Symbolic Comput., 103, 95-107 (2021) · Zbl 1461.32004
[2] de Boor, C., (A Practical Guide to Splines. A Practical Guide to Splines, Applied Mathematical Sciences, vol. 27 (2001), Springer-Verlag: Springer-Verlag New York) · Zbl 0987.65015
[3] de Boor, C.; Höllig, K.; Sabin, M., High accuracy geometric Hermite interpolation, Comput. Aided Geom. Design, 4, 4, 269-278 (1987) · Zbl 0646.65004
[4] Degen, W. L.F., High accuracy approximation of parametric curves, (Mathematical Methods for Curves and Surfaces (Ulvik, 1994) (1995), Vanderbilt Univ. Press: Vanderbilt Univ. Press Nashville, TN), 83-98 · Zbl 0835.41003
[5] Höllig, K.; Koch, J., Geometric Hermite interpolation, Comput. Aided Geom. Design, 12, 6, 567-580 (1995) · Zbl 0875.68851
[6] Höllig, K.; Koch, J., Geometric Hermite interpolation with maximal orderand smoothness, Comput. Aided Geom. Design, 13, 8, 681-695 (1996) · Zbl 0875.68880
[7] Jaklič, G.; Kozak, J.; Krajnc, M.; Žagar, E., On geometric interpolation by planar parametric polynomial curves, Math. Comp., 76, 260, 1981-1993 (2007) · Zbl 1201.41001
[8] Kozak, J.; Krajnc, M., Geometric interpolation by planar cubic polynomial curves, Comput. Aided Geom. Design, 24, 2, 67-78 (2007) · Zbl 1171.65311
[9] Kozak, J.; Žagar, E., On geometric interpolation by polynomial curves, SIAM J. Numer. Anal., 42, 3, 953-967 (2004) · Zbl 1076.65016
[10] Krajnc, M., Geometric Hermite interpolation by cubic \(G^1\) splines, Nonlinear Anal., 70, 7, 2614-2626 (2009) · Zbl 1163.41303
[11] Lachance, M.; Schwartz, A., Four point parabolic interpolation, Comput. Aided Geom. Design, 8, 2, 143-150 (1991) · Zbl 0727.65006
[12] Mørken, K., Parametric interpolation by quadratic polynomials in the plane, (Dæhlen, M.; Lyche, T.; Schumaker, L. L., Mathematical Methods for Curves and Surfaces (1995), Vanderbilt University Press: Vanderbilt University Press Nashville, USA), 385-402 · Zbl 0834.41001
[13] Mørken, K.; Scherer, K., A general framework for high-accuracy parametric interpolation, Math. Comp., 66, 217, 237-260 (1997) · Zbl 0854.41001
[14] Scherer, K., Parametric polynomial curves of local approximation order 8, (Curve and Surface Fitting (Saint Malo, 1999) (2000), Vanderbilt Univ. Press: Vanderbilt Univ. Press Nashville, TN), 375-384
[15] Vrahatis, M. N., Generalization of the Bolzano theorem for simplices, Topology Appl., 202, 40-46 (2016) · Zbl 1347.55004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.