×

Finite-size effects and thermodynamic limit in one-dimensional Janus fluids. (English) Zbl 07430613

MSC:

82-XX Statistical mechanics, structure of matter

Citations:

Zbl 1457.82341
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Roh, K-H; Martin, D. C.; Lahann, J., Biphasic Janus particles with nanoscale anisotropy, Nat. Mater., 4, 759-763 (2005)
[2] Wang, B.; Li, B.; Zhao, B.; Li, C. Y., Amphiphilic Janus gold nanoparticles via combining ‘solid-state grafting-to’ and ‘grafting-from methods’, J. Am. Chem. Soc., 130, 11594-11595 (2008)
[3] Walther, A.; Müller, A. H E., Janus particles: synthesis, self-assembly, physical properties, and applications, Chem. Rev., 113, 5194-5261 (2013)
[4] Binks, B. P.; Fletcher, P. D I., Particles adsorbed at the oil−water interface: a theoretical comparison between spheres of uniform wettability and ‘Janus’ particles, Langmuir, 17, 4708-4710 (2001)
[5] Sciortino, F.; Giacometti, A.; Pastore, G., Phase diagram of Janus particles, Phys. Rev. Lett., 103 (2009)
[6] Yuet, K. P.; Hwang, D. K.; Haghgooie, R.; Doyle, P. S., Multifunctional superparamagnetic Janus particles, Langmuir, 26, 4281-4287 (2010)
[7] Fantoni, R., The Janus Fluid: A Theoretical Perspective, vol 923 (2013), New York: Springer, New York · Zbl 1287.82002
[8] Onishi, S.; Tokuda, M.; Suzuki, T.; Minami, H., Preparation of Janus particles with different stabilizers and formation of one-dimensional particle arrays, Langmuir, 31, 674-678 (2015)
[9] Herzfeld, K. F.; Goeppert‐Mayer, M., On the states of aggregation, J. Chem. Phys., 2, 38-45 (1934)
[10] Tonks, L., The complete equation of state of one, two and three-dimensional gases of hard elastic spheres, Phys. Rev., 50, 955-963 (1936) · Zbl 0015.33503
[11] Nagamiya, T., Statistical mechanics of one-dimensional substances I, Proc. Phys.-Math. Soc. Japan, 22, 705-720 (1940) · JFM 66.1176.01
[12] Nagamiya, T., Statistical mechanics of one-dimensional substances II, Proc. Phys.-Math. Soc. Japan, 22, 1034-1047 (1940) · JFM 66.1176.01
[13] Takahasi, H., Eine einfache methode zur behandlung der statistischen mechanik eindimensionaler substanzen, Proc. Phys.-Math. Soc. Japan, 24, 60-62 (1942)
[14] van Hove, L., Sur l’intégrale de configuration pour les systèmes de particules à une dimension, Physica, 16, 137-143 (1950) · Zbl 0037.41201
[15] Salsburg, Z. W.; Zwanzig, R. W.; Kirkwood, J. G., Molecular distribution functions in a one‐dimensional fluid, J. Chem. Phys., 21, 1098-1107 (1953)
[16] Kikuchi, R., Theory of one‐dimensional fluid binary mixtures, J. Chem. Phys., 23, 2327-2332 (1955)
[17] Lebowitz, J. L.; Percus, J. K.; Zucker, I. J., Radial distribution functions in crystals and fluids, Bull. Am. Phys. Soc., 7, 415 (1962) · Zbl 0114.21404
[18] Katsura, S.; Tago, Y., Radial distribution function and the direct correlation function for one‐dimensional gas with square‐well potential, J. Chem. Phys., 48, 4246-4251 (1968)
[19] Lebowitz, J. L.; Zomick, D., Mixtures of hard spheres with nonadditive diameters: some exact results and solution of PY equation, J. Chem. Phys., 54, 3335-3346 (1971)
[20] Percus, J. K., Equilibrium state of a classical fluid of hard rods in an external field, J. Stat. Phys., 15, 505-511 (1976)
[21] Percus, J. K., One-dimensional classical fluid with nearest-neighbor interaction in arbitrary external field, J. Stat. Phys., 28, 67-81 (1982) · Zbl 0517.76002
[22] Borzi, C.; Ord, G.; Percus, J. K., The direct correlation function of a one-dimensional Ising model, J. Stat. Phys., 46, 51-66 (1987)
[23] Korteweg, D. T., On van Der Waals’s isothermal equation, Nature, 45, 152-154 (1891) · JFM 23.1183.01
[24] Rayleigh, L., On the virial of a system of hard colliding bodies, Nature, 45, 80-82 (1891) · JFM 23.1196.01
[25] Heying, M.; Corti, D. S., The one-dimensional fully non-additive binary hard rod mixture: exact thermophysical properties, Fluid Phase Equilib., 220, 85-103 (2004)
[26] Santos, A., Exact bulk correlation functions in one-dimensional nonadditive hard-core mixtures, Phys. Rev. E, 76 (2007)
[27] Santos, A.; Fantoni, R.; Giacometti, A., Penetrable square-well fluids: exact results in one dimension, Phys. Rev. E, 77 (2008)
[28] Ben-Naim, A.; Santos, A., Local and global properties of mixtures in one-dimensional systems. II. Exact results for the Kirkwood-Buff integrals, J. Chem. Phys., 131 (2009)
[29] Fantoni, R.; Giacometti, A.; Malijevský, A.; Santos, A., A numerical test of a high-penetrability approximation for the one-dimensional penetrable-square-well model, J. Chem. Phys., 133 (2010)
[30] Fantoni, R., Non-existence of a phase transition for penetrable square wells in one dimension, J. Stat. Mech. (2010)
[31] Santos, A.; Cichocki, B.; Napiórkowski, M.; Piasecki, J., Playing with marbles: structural and thermodynamic properties of hard-sphere systems (2014), Warsaw: Warsaw University Press, Warsaw
[32] Santos, A., A Concise Course on the Theory of Classical Liquids Basics and Selected Topics (2016), New York: Springer, New York
[33] Fantoni, R.; Santos, A., One-dimensional fluids with second nearest-neighbor interactions, J. Stat. Phys., 169, 1171-1201 (2017) · Zbl 1387.82050
[34] Montero, A. M.; Santos, A., Triangle-well and ramp interactions in one-dimensional fluids: a fully analytic exact solution, J. Stat. Phys., 175, 269-288 (2019) · Zbl 1419.82067
[35] Maestre, M. A G.; Santos, A., One-dimensional Janus fluids. Exact solution and mapping from the quenched to the annealed system, J. Stat. Mech. (2020) · Zbl 1457.82341
[36] Kern, N.; Frenkel, D., Fluid-fluid coexistence in colloidal systems with short-ranged strongly directional attraction, J. Chem. Phys., 118, 9882-9889 (2003)
[37] Hansen, J. P.; McDonald, I. R., Theory of Simple Liquids (2013), New York: Academic, New York
[38] Fantoni, R.; Giacometti, A.; Sciortino, F.; Pastore, G., Cluster theory of Janus particles, Soft Matter, 7, 2419-2427 (2011)
[39] Fantoni, R., A cluster theory for a Janus fluid, Eur. Phys. J. B, 85, 108 (2012)
[40] Maestre, M. A G.; Fantoni, R.; Giacometti, A.; Santos, A., Janus fluid with fixed patch orientations: theory and simulations, J. Chem. Phys., 138 (2013)
[41] Fantoni, R.; Giacometti, A.; Maestre, M. A G.; Santos, A., Phase diagrams of Janus fluids with up-down constrained orientations, J. Chem. Phys., 139 (2013)
[42] Frenkel, D.; Smit, B., Understanding Molecular Simulation: From Algorithms to Applications (2002), New York: Academic, New York
[43] Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller, A. H.; Teller, E., Equation of state calculations by fast computing machines, J. Chem. Phys., 21, 1087-1092 (1953) · Zbl 1431.65006
[44] Kalos, M. H.; Whitlock, P. A., Monte Carlo Methods (2008), New York: Wiley, New York · Zbl 1170.65302
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.