Fast and robust RSDM shakedown solutions of structures under cyclic variation of loads and imposed displacements. (English) Zbl 07537293

Summary: The Residual Stress Decomposition Method (RSDM) is an iterative numerical procedure developed to directly estimate the kind of asymptotic stress states under cyclic loading of inelastic structures. The method has been modified (RSDM-S) to establish safety margins for elastic shakedown under mechanical and/or thermal loads. In the present work, the formulation of the shakedown problem to account for the coexistence of loads and imposed displacements is presented. An updated RSDM-S procedure in terms of robustness and computational efficiency is also proposed. It is proved that a monotonically decreasing sequence of the iterative steps is created that converges to the shakedown loading factor, thus making the procedure absolutely robust. Based on the monotonicity, a numerical scheme with proven super-linear convergence is suggested that renders the approach very fast. The procedure is then applied to structures under cyclic loadings of loads combined with applied displacements. Shakedown domains, not frequently met in the literature under these two actions, are constructed. Additionally, shakedown values of displacements, simulating quasi-static earthquake loading on structural components, are estimated.


74S99 Numerical and other methods in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
74C05 Small-strain, rate-independent theories of plasticity (including rigid-plastic and elasto-plastic materials)
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74K20 Plates
74K30 Junctions


Full Text: DOI


[1] Analysis User’s Manual, Ver sion 6.14 (2014), Dassault Systems Simulia, Inc
[2] Bisbos, C. D.; Makrodimopoulos, A.; Pardalos, P. M., Second-order cone programming approaches to static shakedown analysis in steel plasticity, Optim, Methods Software, 20, 1, 25-52 (2005) · Zbl 1068.90099
[3] Charbal, A.; Cinoglu, I. S.; Vermaak, N., Ambient multiaxial creep: shakedown analysis of structures using stereo digital image correlation, SN Appl. Sci., 2, 2084 (2020)
[4] Chen, H. F.; Ponter, A. R.S., A method for the evaluation of a ratchet limit and the amplitude of plastic strain for bodies subjected to cyclic loading, Eur. J. Mech. Solid., 20, 555-571 (2001) · Zbl 1014.74013
[5] Chen, G.; Wang, H.; Bezold, A.; Broeckmann, Ch; Weichert, D.; Zhang, L., Strengths prediction of particulate reinforced metal matrix composites (PRMMCs) using direct method and artificial neural network, Compos. Struct., 223, 110951 (2019)
[6] Do, H. V.; Nguyen-Xuan, H., Computation of limit and shakedown loads for pressure vessel components using isogeometric analysis based on Lagrange extraction, Int. J. Pres. Ves. Pip., 169, 57-70 (2019)
[7] Garcea, G.; Leonetti, L., A unified mathematical programming formulation of strain driven and interior point algorithms for shakedown and limit analysis, Int. J. Numer. Methods Eng., 88, 1085-1111 (2011) · Zbl 1242.74115
[8] Gokhfeld, D. A.; Cherniavsky, O. F., Limit Analysis of Structures at Thermal Cycling (1980), Sijthoff & Noordhoff
[9] Grüning, M., Die Tragfahigkeit statisch unbestimmter Tragwerke aus Stahl bei beliebig haufig wiederholter Belastung (1926), Springer: Springer Berlin
[10] Heitzer, M.; Pop, G.; Staat, M., Basis reduction for the shakedown problem for bounded kinematic hardening material, J. Global Optim., 17, 185-200 (2000) · Zbl 1011.74009
[11] Heitzer, M.; Staat, M.; Reiners, H.; Schubert, F., Shakedown and ratchetting under tension -torsion loadings: analysis and experiments, Nucl. Eng. Des., 225, 11-26 (2003)
[12] Hjiaj, M.; Krabbenhøft, K.; Lyamin, A. V., Direct computation of shakedown loads via incremental elastoplastic analysis, Finite Elem. Anal. Des., 122, 39-48 (2016)
[13] Ho, P. L.H.; Le, C. V., A stabilized iRBF mesh-free method for quasi-lower bound shakedown analysis of structures, Comput. Struct., 228, 106157 (2020)
[14] Isaakson, E.; Keller, H. B., Analysis of Numerical Methods (1966), John Wiley & Sons: John Wiley & Sons New York
[15] Kapogiannis, I. A.; Spiliopoulos, K. V., Recent updates of the residual stress decomposition method for shakedown analysis, (Pisano, A. A.; Spiliopoulos, K. V.; Weichert, D., Direct Methods: Methodological Progress and Engineering Applications (2021), Springer Nature: Springer Nature Switzerland), 117-136
[16] Koiter, W., General problems for elastic-plastic solids, (Sneddon, Hill, Progress in Solid Mechanics, vol. 4 (1960), North-Holland: North-Holland Amsterdam), 165-221
[17] König, J. A.; Kleiber, M., On a new method of shakedown analysis, (Bull. del’ Acad. Polon. des Scienc., Serie des sciences techniques, vol. 26 (1978)), 165-171 · Zbl 0401.73049
[18] König, J., Shakedown of Elastic-Plastic Structures (1987), Elsevier · Zbl 0149.22502
[19] König, J. A.; Pycko, S., Shakedown analysis in the case of imposed displacement, Mech. Theoret., 28, 101-108 (1990)
[20] Li, K.; Cheng, G.; Wang, Y.; Liang, Y., A novel primal-dual eigenstress-driven method for shakedown analysis of structures, Int. J. Numer. Methods Eng., 122, 2770-2801 (2021)
[21] Lytwin, M.; Chen, H. F.; Ponter, A. R.S., A generalized method for ratchet analysis of structures undergoing arbitrary thermo-mechanical load histories, Int. J. Numer. Methods Eng., 104, 2, 104-124 (2015) · Zbl 1352.74098
[22] Ma, Z.; Chen, H.; Liu, Y.; Xuan, F. Z., A direct approach to the evaluation of structural shakedown limit considering limited kinematic hardening and non-isothermal effect, Eur. J. Mech. Solid., 79, 103877 (2020) · Zbl 1473.74018
[23] Mackenzie, D.; Boyle, T., A method of estimating limit loads by iterative elastic analysis. I-simple examples, Int. J. Pres. Ves. Pip., 53, 77-95 (1993)
[24] Magisano, D.; Garcea, G., Fiber-based shakedown analysis of three-dimensional frames under multiple load combinations: mixed finite elements and incremental-iterative solution, Int. J. Numer. Methods Eng., 121, 3743-3767 (2020)
[25] Maitournam, M. H.; Pommier, B.; Thomas, J.-J., Détermination de la réponse asymptotique d’une structure anélastique sous chargement thermomécanique cyclique, C. R. Mec., 330, 703-708 (2002) · Zbl 1177.74126
[26] Melan, E., Zur Plastizität des räumlichen Kontinuums, Ing. Arch., 9, 116-126 (1938) · JFM 64.0840.01
[27] Nguyen, A. D.; Hachemi, A.; Weichert, D., Application of the interior-point method to shakedown analysis of pavements, Int. J. Numer. Methods Eng., 75, 4, 414-439 (2008) · Zbl 1195.74018
[28] (Pisano, A. A.; Spiliopoulos, K. V.; Weichert, D., Direct Methods: Methodological Progress and Engineering Applications (2021), Springer Nature Switzerland)
[29] Ponter, A. R.S.; Carter, K. F., Shakedown state simulation techniques based on linear elastic solutions, Comput. Methods Appl. Mech. Eng., 140, 259-279 (1997) · Zbl 0891.73021
[30] Qin, F.; Zhang, L.; Chen, G.; Broeckmann, Ch, Lower bound limit and shakedown analysis of orthotropic material, Math. Mech. Solid, 25, 11, 2037-2049 (2020) · Zbl 1482.74146
[31] Ri, J. H.; Hong, H. S., A basis reduction method using proper orthogonal decomposition for shakedown analysis of kinematic hardening material, Comput. Mech., 64, 1-13 (2019) · Zbl 1467.74016
[32] Structural Analysis Program, Version 19.2.2 (2019), Computers and Structures, Inc
[33] Spagnoli, A.; Terzano, M.; Barber, J. R.; Klarbring, A., Non-linear programming in shakedown analysis with plasticity and friction, J. Mech. Phys. Solid., 104, 71-83 (2017) · Zbl 1406.74117
[34] Simon, J.-W.; Kreimeier, M.; Weichert, D., A selective strategy for shakedown analysis of engineering structures, Int. J. Numer. Methods Eng., 94, 11, 985-1014 (2013) · Zbl 1352.74231
[35] Simon, J.-W., Limit states of structures in n-dimensional loading spaces with limited kinematical hardening, Comput. Struct., 147, 4-13 (2015)
[36] Spiliopoulos, K. V., Simplified methods for the steady state inelastic analysis of cyclically loaded structures, (Weichert, D.; Maier, G., Inelastic Analysis of Structures under Variable Loads (2000), Kluwer Academic Publishers), 213-232
[37] Spiliopoulos, K. V., A simplified method to predict the steady cyclic stress state of creeping structures, ASME J. App. Mech., 69, 148-153 (2002) · Zbl 1110.74687
[38] Spiliopoulos, K. V.; Panagiotou, K. D., A direct method to predict cyclic steady states of elastoplastic structures, Comput. Methods Appl. Mech. Eng., 223-224, 186-198 (2012) · Zbl 1253.74020
[39] Spiliopoulos, K. V.; Panagiotou, K. D., A residual stress decomposition based method for the shakedown analysis of structures, Comput. Methods Appl. Mech. Eng., 276, 410-430 (2014)
[40] Spiliopoulos, K. V.; Panagiotou, K. D., The residual stress decomposition method (RSDM): a novel direct method to predict cyclic elastoplastic states, (Spiliopoulos, K.; Weichert, D., Direct Methods for Limit States in Structures and Materials (2014), Springer Science + Business Media: Springer Science + Business Media Dordrecht), 139-155
[41] Spiliopoulos, K. V.; Panagiotou, K. D., RSDM-S: a method for the evaluation of the shakedown load of elastoplastic structures, (Fuschi, P.; Pisano, A. A.; Weichert, D., Direct Methods for Limit and Shakedown Analysis of Structures (2015), Springer International Publishing: Springer International Publishing Switzerland), 159-175
[42] Spiliopoulos, K. V.; Panagiotou, K. D., A numerical procedure for the shakedown analysis of structures under cyclic thermomechanical loading, Arch. Appl. Mech., 85, 9 (2015), 1499-151
[43] Spiliopoulos, K. V.; Panagiotou, K. D., An enhanced numerical procedure for the shakedown analysis in multidimensional loading domains, Comput. Struct., 193, 155-171 (2017)
[44] Taylor, R. L., FEAP - Finite Element Analysis Program Published (2014), Publisher: University of California: Publisher: University of California Berkeley
[45] Tereshin, D. A.; Cherniavsky, O. F., Theoretical basis and a finite element formula for the direct calculation of steady plastic states, (Fuschi, P. F.; Pisano, A. A.; Weichert, D., Direct Methods for Limit and Shakedown Analysis of Structures (2015), Springer International Publishing Switzerland), 81-103
[46] Tran, T. N.; Liu, G. R.; Nguyen, X. H.; Nguyen, T. T., An edge-based smoothed finite element method for primal-dual shakedown analysis of structures, Int. J. Numer. Methods Eng., 82, 917-938 (2010) · Zbl 1188.74073
[47] Trần, T. N.; Staat, M., Direct plastic structural design under random strength and random load by chance constrained programming, Eur. J. Mech. Solid., 85, 104106 (2021) · Zbl 1478.74014
[48] Varelis, G. E.; Karamanos, S. A., Low Cycle Fatigue of Pressurized steel elbows under in plane bending, ASME J. Pres. Ves. Technol., 137, Article 011401 pp. (2015)
[49] Zhang, J.; Oueslati, A.; Shen, W. Q.; De Saxcé, G.; Nguyen, A. D.; Zhu, Q. Z.; Shao, J. F., Shakedown analysis of a hollow sphere by interior-point method with non-linear optimization, Int. J. Mech. Sci., 175, 105515 (2020)
[50] Zhou, S.; Liu, Y.; Ma, B.; Hou, C.; Ju, Y.; Wu, B.; Rong, K., Upper bound shakedown analysis of plates utilizing the C^1 natural element method, Acta Mech. Solida Sin., 34, 221-236 (2021)
[51] Zouain, N.; SantaAnna, R., Computational formulation for the asymptotic response of elastoplastic solids under cyclic loads, Eur. J. Mech. Solid., 61, 267-278 (2017) · Zbl 1406.74126
[52] Zouain, N.; SantaAnna, R., Computing the asymptotic cyclic response of elastoplastic solids with nonlinear kinematic hardening, Eur. J. Mech. Solid., 72, 120-134 (2018) · Zbl 1406.74127
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.