The Banach-Saks property from a locally solid vector lattice point of view. (English) Zbl 1489.46008

The author suggests a few extensions of the Banach-Saks property of Banach lattices to locally solid vector lattices. Among the extensions are the strong, unbounded, and disjoint versions of the property. Some interrelations between the versions are revealed.


46A40 Ordered topological linear spaces, vector lattices
Full Text: DOI arXiv


[1] Abramovich, Y.; Aliprantis, CD, An Invitation to Operator Theory (2002), Providence: American Mathematical Society, Providence · Zbl 1022.47001
[2] Aliprantis, CD; Burkinshaw, O., Locally Solid Riesz Spaces with Applications to Economics, Mathematical Surveys and Monographs (2003), Providence: American Mathematical Society, Providence · Zbl 1043.46003 · doi:10.1090/surv/105
[3] Aliprantis, CD; Burkinshaw, O., Positive Operators (2006), Berlin: Springer, Berlin · Zbl 1098.47001 · doi:10.1007/978-1-4020-5008-4
[4] Dabboorasad, Y.; Emelyanov, EY; Marabeh, MAA, \(um\)-topology in multi-normed vector lattices, Positivity, 22, 2, 653-667 (2018) · Zbl 1398.46005 · doi:10.1007/s11117-017-0533-6
[5] Deng, Y.; O’Brien, M.; Troitsky, VG, Unbounded norm convergence in Banach lattices, Positivity, 21, 3, 963-974 (2017) · Zbl 1407.46016 · doi:10.1007/s11117-016-0446-9
[6] Gao, N., Troitsky, V.G., Xanthos, F.: Uo-convergence and its applications to Cesàro means in Banach lattices. Isr. J. Math. 220, 649-689 (2017) · Zbl 1395.46017
[7] Kandić, M.; Marabeh, MAA; Troitsky, VG, Unbounded norm topology in Banach lattices, J. Math. Anal. Appl., 451, 1, 259-279 (2017) · Zbl 1373.46011 · doi:10.1016/j.jmaa.2017.01.041
[8] Taylor, MA, Unbounded topologies and uo-convegence in locally solid vector lattices, J. Math. Anal. Appl., 472, 1, 981-1000 (2019) · Zbl 1452.46003 · doi:10.1016/j.jmaa.2018.11.060
[9] Wnuk, W., Locally solid Riesz spaces not containing \(c_0\), Bull. Pol. Acad. Sci. Math., 36, 1-2, 51-56 (1988) · Zbl 0676.46002
[10] Zabeti, O., AM-Spaces from a locally solid vector lattice point of view with applications, Bull. Iran. Math. Soc. (2020) · Zbl 1461.13028 · doi:10.1007/s41980-020-00458-7
[11] Zabeti, O., Unbounded absolute weak convergence in Banach lattices, Positivity, 22, 1, 501-505 (2018) · Zbl 1412.46033 · doi:10.1007/s11117-017-0524-7
[12] Zabeti, O.: Unbounded continuous operators and unbounded Banach-Saks property in Banach lattices. Preprint, arXiv: 2007.05734v3 [math.FA] · Zbl 1412.46033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.