×

Measures of noncompactness on \(w\)-distance spaces. (English) Zbl 1462.54026

Summary: The aim of this paper is to provide a new framework for the study of measures of noncompactness in generalized metric spaces. Firstly, we introduce the notion of \(w\)-measure of noncompactness on metric spaces with a \(w\)-distance and extend the diameter and Kuratowski functionals to this setting. At the end, we give a characterization of metric completeness via our main results, providing a new answer to the open question mentioned by I. Arandjelovic [Stavovi o presecanju i njihove primene u nelinearnoj analizi (Serbian). Belgrade: University of Belgrade (PhD Thesis) (1999)].

MSC:

54E50 Complete metric spaces
47H08 Measures of noncompactness and condensing mappings, \(K\)-set contractions, etc.
55M20 Fixed points and coincidences in algebraic topology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] I. D. Arandjelović,Measures of noncompactness on uniform spaces, Mathematica Moravica, 2 (1998), 1-8. · Zbl 1007.54024
[2] I. Arandjelović,Stavovi o presecanju i njihove primene u nelinearnoj analizi(in Serbian), PhD thesis, Faculty of Mathematics, University of Belgrade, 1999.
[3] J. Banaś, M. Mursaleen,Sequence spaces and measures of noncompactness with applications to differential and integral equations, Springer, 2014. · Zbl 1323.47001
[4] G. Darbo,Punti uniti in trasformazioni a codominio non compatto, Rendiconti del Seminario Matematico della Università di Padova, 24 (1955), 84-92. · Zbl 0064.35704
[5] D. Ilić, V. Rakočević,Common fixed points for maps on metric space withw-distance, Applied Mathematics and Computation, 199 (2008), 599-610. · Zbl 1143.54018
[6] O. Kada, T. Suzuki, W. Takahashi,Nonconvex minimization theorems and fixed point theorems in complete metric spaces, Mathematica Japonica, 44 (1996), 381-391. · Zbl 0897.54029
[7] A. Kostić,Best proximity points revisited, Filomat, 33 (16) (2019), 5159-5166. Aleksandar Kostić69 · Zbl 1491.54107
[8] A. Kostić, E. Karapinar, V. Rakočević,Best proximity points and fixed points withRfunctions in the framework ofw-distances, Bulletin of the Australian Mathematical Society, 99 (3) (2019), 497-507. · Zbl 1502.54043
[9] A. Kostić, V. Rakočević, S. Radenović,Best proximity points involving simulation functions withw0-distances, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 113 (2019), 715-727. · Zbl 1489.54162
[10] K. Kuratowski,Sur les espaces complets, Fundamenta Mathematicae, 15 (1930), 301-309.
[11] E. Malkowsky, V. Rakočević,Introduction into the theory of sequence spaces and measures of noncompactness, Zbornik Radova, 17 (2000), 143-234. · Zbl 0996.46006
[12] V. Rakočević,Measures of noncompactness and some applications, Filomat, 12 (2) (1998), 87-120. · Zbl 1009.47047
[13] M. Singha, K. Sarkar,Towards Cantor intersection theorem and Baire category theorem in partial metric spaces, Matematički Vesnik, 69 (2) (2017), 126-132. · Zbl 1474.54091
[14] T. Suzuki, W. Takahashi,Fixed point theorems and characterizations of metric completeness, Topological Methods in Nonlinear Analysis, 8 (1996), 371-382. · Zbl 0902.47050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.