×

One-dimensional quaternionic special affine Fourier transform. (English) Zbl 1489.46075

Summary: We extend the special affine Fourier transform in the context of quaternion valued functions and study its properties including an uncertainty principle. The same transform is studied on a suitably constructed Boehmian space.

MSC:

46S05 Quaternionic functional analysis
44A15 Special integral transforms (Legendre, Hilbert, etc.)
44A35 Convolution as an integral transform
46F12 Integral transforms in distribution spaces
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Abe, S.; Sheridan, JT, Generalization of the fractional Fourier transformation to an arbitrary linear lossless transformation: an operator approach, J. Phys., 27, 4179-4187 (1994) · Zbl 0859.42008
[2] Abe, S.; Sheridan, JT, Optical operations on wave functions as the abelian subgroups of the special affine Fourier transformation, Opt. Lett., 19, 1801-1803 (1994)
[3] Abe, S.; Sheridan, JT, Almost Fourier and almost Fresnel transformations, Opt. Commun., 113, 385-388 (1995)
[4] Akila, L.; Roopkumar, R., A natural convolution of quaternion valued functions and its applications, Appl. Math. Comput., 242, 633-642 (2014) · Zbl 1334.42010
[5] Akila, L.; Roopkumar, R., Multidimensional quaternionic Gabor transforms, Adv. Appl. Clifford Algebras, 25, 771-1002 (2016) · Zbl 1350.42015
[6] Atanasiu, D.; Mikusiński, P., On the Fourier transform, Boehmians, and distributions, Colloq. Math., 108, 263-276 (2007) · Zbl 1274.42018
[7] Arteaga, C.; Marrero, I., The Hankel transform of tempered Boehmians via the exchange property, Appl. Math. Comput., 219, 810-818 (2012) · Zbl 1302.46029
[8] Bhandari, A.; Zayed, AI; Nashed, MZ; Li, X., Convolution and product theorems for the special affine Fourier transform, Frontiers in Orthogonal Polynomials and q-Series, 119-137 (2018), Singapore: World Scientific, Singapore · Zbl 1414.42007
[9] Bhandari, A.; Zayed, AI, Shift-invariant and sampling spaces associated with the special affine Fourier transform, Appl. Comput. Harmon. Anal., 47, 30-52 (2019) · Zbl 1409.94841
[10] Cai, LZ, Special affine fractional Fourier transformation in frequency domain, Opt. Commun., 185, 271-276 (2000)
[11] El Haoui, Y.; Hitzer, E., Generalized uncertainty principles associated with the quaternionic offset linear canonical transform, Complex Var. Elliptic Equ. (2021) · Zbl 1494.42008
[12] Ell, T.A.: Quaternion Fourier transforms for analysis of two-dimensional linear time-invariant partial differential systems. In: Proceedings of the 32nd Conference on Decision Control, vol. 1, pp. 1830-1841 (1993)
[13] Ganesan, C.; Roopkumar, R., On generalizations of Boehmians and Hartley transform, Mat. Vesnik., 69, 133-143 (2017) · Zbl 1474.44007
[14] He, J.; Yu, B., Continuous wavelet transforms on the space \(L^2(R, H, dx)\), Appl. Math. Lett., 17, 111-121 (2004) · Zbl 1040.42031
[15] Hitzer, EMS, Directional uncertainty principle for quaternion Fourier transform, Adv. Appl. Clifford Algebras, 20, 271-284 (2010) · Zbl 1198.42006
[16] James, DFV; Agarwal, GS, The generalized Fresnel transform and its applications to optics, Opt. Commun., 126, 207-212 (1996)
[17] Karunakaran, V.; Kalpakam, NV, Hilbert transform for Boehmians, Integral Transforms Spec. Funct., 9, 19-36 (2000) · Zbl 0982.46030
[18] Mikusiński, P., Convergence of Boehmians, Jpn. J. Math., 9, 159-179 (1983) · Zbl 0524.44005
[19] Mikusiński, P., On harmonic Boehmians, Proc. Am. Math. Soc., 106, 447-449 (1989) · Zbl 0671.44006
[20] Mikusiński, P., On flexibility of Boehmians, Integral Transforms Spec. Funct., 7, 299-312 (1996) · Zbl 0863.44004
[21] Nemzer, D., Integrable Boehmians, Fourier transforms, and Poisson’s summation formula, Appl. Anal. Disc. Math., 1, 172-183 (2007) · Zbl 1199.46096
[22] Nemzer, D., Quasi-asymptotic behavior of Boehmians, Novi Sad J. Math., 46, 87-102 (2016) · Zbl 1455.46044
[23] Nemzer, D., Extending the Stieltjes transform, Sarajevo J. Math., 10, 197-208 (2014) · Zbl 1330.46042
[24] Moshinsky, M.; Quesne, C., Linear canonical transformations and their unitary representations, J. Math. Phys., 12, 1772-1780 (1971) · Zbl 0247.20051
[25] Namias, V., The fractional order Fourier transform and its application to quantum mechanics, IMA J. Appl. Math., 25, 241-265 (1980) · Zbl 0434.42014
[26] Pei, SC; Ding, JJ, Eigenfunctions of the offset Fourier, fractional Fourier, and linear canonical transforms, J. Opt. Soc. Am. A, 20, 522-532 (2003)
[27] Roopkumar, R., Quaternionic one-dimensional fractional Fourier transform, Optik, 127, 11657-11661 (2016)
[28] Roopkumar, R., Ripplet transform and its extension to Boehmians, Georgian Math. J., 27, 149-156 (2017) · Zbl 1446.44004
[29] Roopkumar, R., Quaternionic fractional Fourier transform for Boehmians, Ukr. J. Math., 72, 942-952 (2020) · Zbl 1467.46043
[30] Sangwine, SJ, Fourier transforms of colour images using quaternion or hypercomplex numbers, Electron. Lett., 32, 1979-1980 (1996)
[31] Sangwine, SJ, Colour image edge detector based on quaternion convolution, Electron. Lett., 34, 969-971 (1998)
[32] Shah, FA; Tantary, AY, Quaternionic shearlet transform, Optik, 175, 115-125 (2018)
[33] Sharma, KK; Joshi, SD, Signal separation using linear canonical and fractional Fourier transforms, Opt. Commun., 265, 454-460 (2006)
[34] Stern, A., Sampling of compact signals in offset linear canonical transform domains, Signal Image Video Process., 1, 359-367 (2007) · Zbl 1122.94023
[35] Xiang, Q.; Qin, K., Convolution, correlation, and sampling theorems for the offset linear canonical transform, Signal Image Video Process., 8, 2385-2406 (2013)
[36] Zayed, AI, A convolution and product theorem for the fractional Fourier transform, IEEE Signal Process. Lett., 5, 101-103 (1998)
[37] Zemanian, AH, Generalized Integral Transformations (1968), New York: Wiley Inc., New York · Zbl 0181.12701
[38] Zhi, X.; Wei, D.; Zhang, W., A generalized convolution theorem for the special affine Fourier transform and its application to filtering, Optik, 127, 2613-2616 (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.