Kusraeva, Z. A. Regularity of continuous multilinear operators and homogeneous polynomials. (English. Russian original) Zbl 1487.46048 Math. Notes 110, No. 5, 718-725 (2021); translation from Mat. Zametki 110, No. 5, 726-735 (2021). The author extends to the case of multilinear operators and homogeneous polynomials the results about the regularity of continuous operators of [J. Synnatzschke, Vestn. Leningr. Univ., Mat. Mekh. Astron. 1972, No. 1, 60–69 (1972; Zbl 0234.47035); Y. A. Abramovich and A. W. Wickstead, Indag. Math., New Ser. 8, No. 3, 281–294 (1997; Zbl 0908.47031)].The research utilizes the technique of the Fremlin tensor product. Reviewer: S. S. Kutateladze (Novosibirsk) Cited in 1 Document MSC: 46G25 (Spaces of) multilinear mappings, polynomials 47B65 Positive linear operators and order-bounded operators 46B42 Banach lattices Keywords:Banach lattice; Levi property; multilinear operator; homogeneous polynomial; Fremlin tensor product; linearization Citations:Zbl 0234.47035; Zbl 0908.47031 × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Kusraeva, Z. A., Powers of quasi-Banach lattices and orthogonally additive polynomials, J. Math. Anal. Appl., 458, 1, 767-780 (2018) · Zbl 1465.46022 · doi:10.1016/j.jmaa.2017.09.019 [2] Xiong, Hong Yun, On whether or not \(\mathcal{L}(E,F)=\mathcal{L}^r(E,F)\) for some classical Banach lattices \(E\) and \(F\), Indag. Math., 0, 46, 267-282 (1984) · Zbl 0562.46017 · doi:10.1016/1385-7258(84)90027-1 [3] Kantorovich, L. V.; Vulikh, B. Z., Sur la représentation des opérations linéaires, Compositio Math., 5, 119-165 (1937) · Zbl 0017.21502 [4] Vulikh, B. Z., Introduction to the Theory of Semi-Ordered Spaces (1961), Moscow: GIFML, Moscow · Zbl 0101.08501 [5] Aliprantis, C. D.; Burkinshaw, O., Positive Operators (1985), New York: Academic Press, New York · Zbl 0608.47039 [6] Meyer-Nieberg, P., Banach Lattices (1991), Berlin: Springer- Verlag, Berlin · Zbl 0743.46015 · doi:10.1007/978-3-642-76724-1 [7] Synnachke, Yu., On an operator adjoint to a regular one and some of its applications to the question of complete continuity and weak complete continuity of regular operators, Vestn. Leningradsk. Gos. Univ., Ser. Mat. Mekh., 0, 1, 60-69 (1972) · Zbl 0234.47035 [8] Abramovich, Yu. A.; Wickstead, A. W., When each continuous operator is regular. II, Indag. Math. (N. S.), 8, 3, 281-294 (1997) · Zbl 0908.47031 · doi:10.1016/S0019-3577(97)81812-5 [9] Bu, Q.; Buskes, G., Polynomials on Banach lattices and positive tensor products, J. Math. Anal. Appl., 388, 845-862 (2012) · Zbl 1245.46035 · doi:10.1016/j.jmaa.2011.10.001 [10] Loane, J., Polynomials on Riesz Spaces (2007), Galway: Department of Mathematics, National University of Ireland, Galway · Zbl 1187.46035 [11] Dineen, S., Complex Analysis on Infinite-Dimensional Spaces (1999), Berlin: Springer- Verlag, Berlin · Zbl 1034.46504 · doi:10.1007/978-1-4471-0869-6 [12] Abramovich, Y. A.; Aliprantis, C. D., Positive operators, Handbook of the Geometry of Banach Spaces, I, 85-122 (2001) · Zbl 1202.47042 · doi:10.1016/S1874-5849(01)80004-8 [13] Fremlin, D. H., Measure Theory. Vol. 3. Measure Algebras (2002), Cambridge: Cambridge Univ. Press, Cambridge · Zbl 1165.28002 [14] Bu, Q.; Buskes, G.; Li, Y., Abstract \(L\)- and abstract \(M\)-spaces of polynomials on Banach lattices, Proc. Edinb. Math. Soc. (2), 58, 3, 617-629 (2015) · Zbl 1336.46042 · doi:10.1017/S0013091514000297 [15] Ryan, R. A., Introduction to Tensor Products of Banach Spaces (2002), London: Springer- Verlag, London · Zbl 1090.46001 · doi:10.1007/978-1-4471-3903-4 [16] Kusraeva, Z. A., Representation of orthogonally additive polynomials, Siberian Math. J., 52, 2, 248-255 (2011) · Zbl 1226.46043 · doi:10.1134/S003744661102008X [17] Kusraeva, Z. A.; Siukaev, S. N., Some properties of orthogonally additive homogeneous polynomials on Banach lattices, Vladikavkaz. Mat. Zh., 22, 4, 92-103 (2020) · Zbl 1474.46082 [18] Fremlin, D. H., Tensor product of Banach lattices, Math. Ann., 211, 87-106 (1974) · Zbl 0272.46050 · doi:10.1007/BF01344164 [19] Schaefer, H. H., Banach Lattices and Positive Operators (1974), Berlin: Springer- Verlag, Berlin · Zbl 0296.47023 · doi:10.1007/978-3-642-65970-6 [20] Fremlin, D. H., Topological Riesz Spaces and Measure Theory (1974), London: Cambridge Univ. Press, London · Zbl 0273.46035 · doi:10.1017/CBO9780511897207 [21] Abramovich, Yu. A.; Wickstead, A. W., The regularity of order bounded operators into \(C(K)\). II, Quart. J. Math. Oxford Ser. (2), 44, 175, 257-270 (1993) · Zbl 0991.47023 · doi:10.1093/qmath/44.3.257 [22] Fremlin, D. H., Tensor product of Archimedean vector lattices, Amer. J. Math., 94, 777-798 (1972) · Zbl 0252.46094 · doi:10.2307/2373758 [23] Wickstead, A. W., The regularity of order bounded operators into \(C(K)\), Quart. J. Math. Oxford Ser. (2), 41, 163, 359-368 (1990) · Zbl 0716.47022 · doi:10.1093/qmath/41.3.359 [24] Il’ina, K. Yu.; Kusraeva, Z. A., On the contunuation of positive operators, Sibirsk. Mat. Zh., 61, 2, 330-336 (2020) · Zbl 1445.47031 · doi:10.33048/smzh.2020.61.208 [25] Gelieva, A. A.; Kusraeva, Z. A., On dominated extension of linear operators, Math. Notes, 108, 2, 171-178 (2020) · Zbl 1518.47068 · doi:10.1134/S0001434620070184 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.