×

Rigidity aspects of singular patches in stratified flows. (English) Zbl 1501.35316

Summary: We explore the local well-posedness theory for the 2D inviscid Boussinesq system when the vorticity is given by a singular patch. We give a significant improvement on the result of Z. Hassainia and T. Hmidi [J. Math. Anal. Appl. 430, No. 2, 777–809 (2015; Zbl 1319.35189)] by replacing their compatibility assumption on the density with a constraint on its platitude degree on the singular set. The second main contribution focuses on the same issue for the partial viscous Boussinesq system. We establish a uniform LWP theory with respect to the vanishing conductivity. This issue is much more delicate than the inviscid case and one should carefully deal with various difficulties related to the diffusion effects which tend to alter some local structures. The weak a priori estimates are not trivial and refined analysis on transport-diffusion equation subject to a logarithmic singular potential is required. Another difficulty stems from some commutators arising in the control of the co-normal regularity that we counterbalance in part by the maximal smoothing effects of transport-diffusion equation advected by a velocity field which scales slightly below the Lipschitz class.

MSC:

35Q35 PDEs in connection with fluid mechanics
76B03 Existence, uniqueness, and regularity theory for incompressible inviscid fluids
76B70 Stratification effects in inviscid fluids
76D05 Navier-Stokes equations for incompressible viscous fluids
35Q31 Euler equations
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness

Citations:

Zbl 1319.35189
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] 10.1016/j.jde.2006.10.008 · Zbl 1111.35032
[2] 10.1007/978-3-642-16830-7 · Zbl 1227.35004
[3] 10.1016/j.anihpc.2004.10.010 · Zbl 1157.35469
[4] 10.1137/15M1033125 · Zbl 1355.35110
[5] 10.24033/asens.1404 · Zbl 0495.35024
[6] 10.1007/s00222-014-0548-6 · Zbl 1320.35266
[7] 10.1007/s00039-015-0311-1 · Zbl 1480.35316
[8] ; Cannon, J. R.; DiBenedetto, Emmanuele, The initial value problem for the Boussinesq equations with data in Lp, Approximation methods for Navier-Stokes problems (Proc. Sympos., Univ. Paderborn). Lecture Notes in Math., 771, 129 (1980) · Zbl 0429.35059
[9] ; Chae, Dongho, Local existence and blow-up criterion for the Euler equations in the Besov spaces, Asymptot. Anal., 38, 3-4, 339 (2004) · Zbl 1068.35097
[10] 10.1016/j.aim.2005.05.001 · Zbl 1100.35084
[11] 10.1017/S0308210500026810 · Zbl 0882.35096
[12] 10.1017/S0027763000006991 · Zbl 0939.35150
[13] 10.1007/BF01239528 · Zbl 0739.76010
[14] ; Chemin, Jean-Yves, Perfect incompressible fluids. Oxford Lecture Series in Mathematics and its Applications, 14 (1998) · Zbl 0927.76002
[15] 10.1007/s00220-021-04067-1 · Zbl 1485.35071
[16] 10.1080/03605309708821280 · Zbl 0882.35093
[17] 10.1016/S0021-7824(97)89964-3 · Zbl 0903.76020
[18] 10.4171/RMI/276 · Zbl 1158.35404
[19] 10.1016/j.matpur.2011.04.005 · Zbl 1229.35195
[20] 10.24033/bsmf.2557 · Zbl 1162.35063
[21] 10.1007/s00220-009-0821-5 · Zbl 1186.35157
[22] 10.1080/03605302.2016.1252394 · Zbl 1430.35195
[23] 10.1016/S0021-7824(98)00003-8 · Zbl 0927.76014
[24] 10.1007/s00021-020-00547-x · Zbl 1476.76019
[25] 10.1081/PDE-120024362 · Zbl 1030.76011
[26] 10.1007/s40818-020-00080-0 · Zbl 1462.35287
[27] 10.1007/s00205-019-01457-7 · Zbl 1507.35153
[28] 10.1080/03605302.2012.698343 · Zbl 1256.35070
[29] 10.1007/s00021-007-0259-5 · Zbl 1214.76008
[30] 10.3934/dcdss.2012.5.1091 · Zbl 1269.35027
[31] 10.24033/bsmf.2265 · Zbl 0844.76013
[32] 10.1007/BF02006004 · Zbl 0681.76048
[33] 10.1016/j.jmaa.2015.04.087 · Zbl 1319.35189
[34] 10.1016/j.matpur.2005.01.004 · Zbl 1095.35024
[35] 10.4171/RMI/464 · Zbl 1127.35037
[36] ; Hmidi, Taoufik; Keraani, Sahbi, On the global well-posedness of the two-dimensional Boussinesq system with a zero diffusivity, Adv. Differential Equations, 12, 4, 461 (2007) · Zbl 1154.35073
[37] 10.1512/iumj.2009.58.3590 · Zbl 1178.35303
[38] 10.1016/j.jfa.2010.10.012 · Zbl 1220.35127
[39] 10.1016/j.physd.2009.12.009 · Zbl 1194.35329
[40] 10.4310/CMS.2014.v12.n8.a8 · Zbl 1305.35108
[41] 10.1007/BF01474611 · Zbl 0008.06902
[42] 10.3934/dcds.2005.12.1 · Zbl 1274.76185
[43] ; Judovič, V. I., Non-stationary flows of an ideal incompressible fluid, Ž. Vyčisl. Mat i Mat. Fiz., 3, 1032 (1963) · Zbl 0129.19402
[44] 10.1016/0022-1236(72)90003-1 · Zbl 0229.76018
[45] 10.4171/RMI/26 · Zbl 0615.35078
[46] 10.1016/j.jde.2013.07.011 · Zbl 1284.35343
[47] 10.1201/9781420035674
[48] ; Liao, Xian; Zhang, Ping, Global regularities of 2-D density patches for inhomogeneous incompressible viscous flow, Proceedings of the Seventh International Congress of Chinese Mathematicians, Vol. I. Adv. Lect. Math. (ALM), 43, 373 (2019) · Zbl 1436.35275
[49] 10.1016/j.jde.2019.11.018 · Zbl 1439.35371
[50] 10.1007/s00021-008-0286-x · Zbl 1195.76136
[51] ; Majda, Andrew J.; Bertozzi, Andrea L., Vorticity and incompressible flow. Cambridge Texts in Applied Mathematics, 27 (2002) · Zbl 0983.76001
[52] ; Meddour, Halima, Local persistence of geometric structures for Boussinesq system with zero viscosity, Mat. Vesnik, 71, 4, 285 (2019) · Zbl 1474.35163
[53] 10.4310/dpde.2018.v15.n4.a1 · Zbl 1404.35366
[54] 10.1007/s00220-013-1721-2 · Zbl 1307.35233
[55] 10.1215/kjm/1250520601 · Zbl 0657.35073
[56] 10.1007/s00220-019-03446-z · Zbl 1439.35375
[57] 10.3934/dcds.2020242 · Zbl 1447.35273
[58] 10.1081/PDE-200033764 · Zbl 1091.76006
[59] ; Pedlosky, J., Geophysical fluid dynamics (1987) · Zbl 0713.76005
[60] 10.1017/CBO9781139095143 · Zbl 1358.35002
[61] ; Serfati, Philippe, Une preuve directe d’existence globale des vortex patches 2D, C. R. Acad. Sci. Paris Sér. I Math., 318, 6, 515 (1994) · Zbl 0803.76022
[62] 10.1016/j.jde.2011.07.035 · Zbl 1248.76011
[63] ; Taniuchi, Yasushi, A note on the blow-up criterion for the inviscid 2-D Boussinesq equations, The Navier-Stokes equations : theory and numerical methods. Lecture Notes in Pure and Appl. Math., 223, 131 (2002) · Zbl 0991.35070
[64] 10.1016/j.jfa.2017.01.013 · Zbl 1375.35351
[65] 10.1007/s002050050128 · Zbl 0926.35123
[66] 10.1007/BF01474610 · Zbl 0008.06901
[67] 10.1016/j.jde.2012.02.025 · Zbl 1305.35119
[68] 10.1007/s00028-015-0277-3 · Zbl 1326.35257
[69] 10.5802/aif.2033 · Zbl 1097.35118
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.