×

Eigenvalues of Cayley graphs. (English) Zbl 1492.05093

This is a survey comprising the main results on eigenvalues of Cayley graphs, digraphs, distinct generalizations, and their applications.
The text is divided into 14 chapters: Introduction; Eigenvalues of Cayley graphs; Integral Cayley graphs; Cospectral Cayley graphs; Cayley graphs on finite rings; Energies of Cayley graphs; Ramanujan Cayley graphs; Second largest eigenvalue of Cayley graphs; Perfect state transfer in Cayley graphs; Distance-regular Cayley graphs; Generalizations of Cayley graphs; Directed Cayley graphs; Miscellaneous; Open problems and research topics.
The bibliography is quite interesting and contains 394 references.

MSC:

05C50 Graphs and linear algebra (matrices, eigenvalues, etc.)
05C25 Graphs and abstract algebra (groups, rings, fields, etc.)

Software:

GAP
PDF BibTeX XML Cite
Full Text: arXiv

References:

[1] G. Aalipour and S. Akbari. Some properties of a Cayley graph of a commutative ring.Comm. Algebra, 42(4):1582-1593, 2014. (Cited on pages 109 and 121.) · Zbl 1291.05052
[2] A. Abdollahi, S. Janbaz, and M. Ghahramani. A large family of cospectral Cayley graphs over dihedral groups.Discrete Math., 340(5):1116-1121, 2017. (Cited on page 41.) · Zbl 1357.05056
[3] A. Abdollahi, S. Janbaz, and M. Jazaeri. Groups all of whose undirected Cayley graphs are determined by their spectra.J. Algebra Appl., 15(9):1650175, 15 pages, 2016. (Cited on pages 41 and 44.) · Zbl 1346.05156
[4] A. Abdollahi and M. Jazaeri. On groups admitting no integral Cayley graphs besides complete multipartite graphs.Appl. Anal. Discrete Math., 7(1):119-128, 2013. (Cited on page 38.) · Zbl 1299.05205
[5] A. Abdollahi and M. Jazaeri. Groups all of whose undirected Cayley graphs are integral.European J. Combin., 38:102-109, 2014. (Cited on page 36.) · Zbl 1282.05063
[6] A. Abdollahi, E. R. van Dam, and M. Jazaeri. Distance-regular Cayley graphs with least eigenvalue−2.Des. Codes Cryptogr., 84(1-2):73-85, 2017. (Cited on pages 109, 110, and 111.) · Zbl 1367.05098
[7] A. Abdollahi and E. Vatandoost. Which Cayley graphs are integral?Electron. J. Combin., 16(1):#R122, 17 pages, 2009. (Cited on pages 26, 27, 32, 34, and 35.) · Zbl 1186.05064
[8] A. Abdollahi and E. Vatandoost. Integral quartic Cayley graphs on abelian groups. Electron. J. Combin., 18(1):#P89, 14 pages, 2011. (Cited on pages 36 and 38.) · Zbl 1217.05103
[9] A. ´Ad´am. Research problems 2-10.Journal of Combinatorical Theory, 2(3):393, 1967. (Cited on page 42.)
[10] C. Adiga and B. R. Rakshith. On spectra of unitary Cayley mixed graph.Trans. Comb., 5(2):1-9, 2016. (Cited on page 131.) · Zbl 1463.05322
[11] C. Adiga, B. R. Rakshith, and W. So. On the mixed adjacency matrix of a mixed graph.Linear Algebra Appl., 495:223-241, 2016. (Cited on page 131.) · Zbl 1331.05132
[12] C. Adiga, E. Sampathkumar, and M. A. Sriraj. Color energy of a unitary Cayley graph.Discuss. Math. Graph Theory, 34(4):707-721, 2014. (Cited on page 65.) · Zbl 1303.05056
[13] A. Ahmady.Integral Cayley Graphs. ProQuest LLC, Ann Arbor, MI, 2013. Thesis (Ph.D.)-Simon Fraser University (Canada). (Cited on pages 32 and 33.)
[14] A. Ahmady, J. P. Bell, and B. Mohar. Integral Cayley graphs and groups.SIAM J. Discrete Math., 28(2):685-701, 2014. (Cited on pages 36 and 38.) · Zbl 1298.05155
[15] D. N. Akhiezer. On the eigenvalues of the Coxeter Laplacian.J. Algebra, 313(1):4-7, 2007. (Cited on pages 86 and 87.) · Zbl 1134.20041
[16] R. Akhtar, T. Jackson-Henderson, R. Karpman, M. Boggess, I. Jim´enez, Am. Kinzel, and D. Pritikin. On the unitary Cayley graph of a finite ring.Electron. J. Combin., 16(1):#R117, 13 pages, 2009. (Cited on page 46.) · Zbl 1230.05149
[17] N. T. Allen. On the spectra of certain graphs arising from finite fields.Finite Fields Appl., 4(4):393-440, 1998. (Cited on pages 77 and 137.) · Zbl 0913.05072
[18] N. Alon. Eigenvalues and expanders.Combinatorica, 6(2):83-96, 1986. (Cited on page 66.) · Zbl 0661.05053
[19] N. Alon. Large sets in finite fields are sumsets.J. Number Theory, 126(1):110-118, 2007. (Cited on page 118.) · Zbl 1145.11085
[20] N. Alon and F. R. K. Chung. Explicit construction of linear sized tolerant networks. Discrete Math., 72(1-3):15-19, 1988. (Cited on page 126.) · Zbl 0657.05068
[21] N. Alon and V. D. Milman.λ1,isoperimetric inequalities for graphs, and superconcentrators.J. Combin. Theory Ser. B, 38(1):73-88, 1985. (Cited on page 66.) · Zbl 0549.05051
[22] N. Alon and Y. Roichman. Random Cayley graphs and expanders.Random Structures Algorithms, 5(2):271-284, 1994. (Cited on pages 125 and 126.) · Zbl 0798.05048
[23] R. C. Alperin and B. L. Peterson. Integral sets and Cayley graphs of finite groups. Electron. J. Combin., 19(1):#P44, 12 pages, 2012. (Cited on page 19.) · Zbl 1243.05143
[24] M. Amooshahi and B. Taeri. Cayley sum color and anti-circulant graphs.Linear Algebra Appl., 466:409-420, 2015. (Cited on pages 118 and 119.) · Zbl 1303.05082
[25] M. Amooshahi and B. Taeri. On Cayley sum graphs of non-abelian groups.Graphs Combin., 32(1):17-29, 2016. (Cited on pages 118 and 119.) · Zbl 1331.05100
[26] M. Amooshahi and B. Taeri. On integral Cayley sum graphs.Indian J. Pure Appl. Math., 47(4):583-601, 2016. (Cited on page 118.) · Zbl 1371.05118
[27] J. Angel. Finite upper half planes over finite fields.Finite Fields Appl., 2(1):62-86, 1996. (Cited on page 76.) · Zbl 0851.11072
[28] J. Angel, N. Celniker, S. Poulos, A. Terras, C. Trimble, and E. Velasquez. Special functions on finite upper half planes. InHypergeometric Functions on Domains of Positivity, Jack Polynomials, and Applications (Tampa, FL, 1991), volume 138 of Contemp. Math., pages 1-26. Amer. Math. Soc., Providence, RI, 1992. (Cited on page 76.) · Zbl 0790.11078
[29] J. Angel, S. Poulos, A. Terras, C. Trimble, and E. Velasquez. Spherical functions and transforms on finite upper half planes: eigenvalues of the combinatorial Laplacian, uncertainty, traces. InGeometry of the Spectrum (Seattle, WA, 1993), volume 173 · Zbl 0813.11034
[30] J. Angel, C. Trimble, B. Shook, and A. Terras. Graph spectra for finite upper half planes over rings.Linear Algebra Appl., 226/228:423-457, 1995. (Cited on pages 76 and 77.) · Zbl 0833.11059
[31] J. P. Angel.Finite Upper Half Planes over Finite Rings and Their Associated Graphs. ProQuest LLC, Ann Arbor, MI, 1993. Thesis (Ph.D.)-University of California, San Diego. (Cited on page 76.)
[32] R. J. Angeles-Canul, R. M. Norton, M. C. Opperman, C. C. Paribello, M. C. Russell, and C. Tamon. Perfect state transfer, integral circulants, and join of graphs. Quantum Inf. Comput., 10(3-4):325-342, 2010. (Cited on page 95.) · Zbl 1236.81049
[33] M. Arezoomand. On the eigenvalues ofn-Cayley graphs: a survey.Facta Univ. Ser. Math. Inform., 34(3):563-572, 2019. (Cited on page 113.) · Zbl 1474.05240
[34] M. Arezoomand.A note on the eigenvalues ofn-Cayley graphs.Mat. Vesnik, 72(4):351-357, 2020. (Cited on page 113.) · Zbl 1474.05241
[35] M. Arezoomand and B. Taeri. On the characteristic polynomial ofn-Cayley digraphs.Electron. J. Combin., 20(3):#P57, 14 pages, 2013. (Cited on page 113.) · Zbl 1295.05139
[36] M. Arezoomand and B. Taeri. A classification of finite groups with integral bi-Cayley graphs.Trans. Comb., 4(4):55-61, 2015. (Cited on page 113.) · Zbl 1463.05247
[37] M. F. Atiyah and I. G. Macdonald.Introduction to Commutative Algebra. AddisonWesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969. (Cited on pages 8 and 45.) · Zbl 0175.03601
[38] S. V. Avgustinovich, E. N. Khomyakova, and E. V. Konstantinova. Multiplicities of eigenvalues of the star graph.Sib. ‘Elektron. Mat. Izv., 13:1258-1270, 2016. (Cited on page 27.) · Zbl 1370.05089
[39] L. Babai. Spectra of Cayley graphs.J. Combin. Theory Ser. B, 27(2):180-189, 1979. (Cited on pages 11, 12, 13, and 41.) · Zbl 0338.05110
[40] L. Babai. Arc transitive covering digraphs and their eigenvalues.J. Graph Theory, 9(3):363-370, 1985. (Cited on page 123.) · Zbl 0583.05030
[41] R. Bacher.Valeur propre minimale du laplacien de Coxeter pour le groupe sym´etrique.J. Algebra, 167(2):460-472, 1994. (Cited on page 81.) · Zbl 0812.05028
[42] M. Badaoui, A. Bretto, and B. Mourad. On a relationship between Cayley graphs andG-graphs with some applications.Linear Algebra Appl., 582:37-57, 2019. (Cited on page 130.) · Zbl 1431.05079
[43] R. Balakrishnan. The energy of a graph.Linear Algebra Appl., 387:287-295, 2004. (Cited on page 52.) · Zbl 1041.05046
[44] R. Balakrishnan, P. Paulraja, W. So, and M. Vinay. Some properties of the Kn¨odel graphW(k,2k),k>4.Australas. J. Combin., 74:17-32, 2019. (Cited on page 134.) · Zbl 1420.05071
[45] K. Bali´nska, D. Cvetkovi´c, Z. Radosavljevi´c, S. Simi´c, and D. Stevanovi´c. A survey on integral graphs.Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat., 13:42-65, 2002. (Cited on page 17.) · Zbl 1051.05057
[46] J. Bamberg, M. Lee, K. Momihara, and Q. Xiang.A New Infinite Family of Hemisystems of the Hermitian Surface.Combinatorica, 38(1):43-66, 2018. (Cited on page 108.) · Zbl 1399.51005
[47] E. Bannai, O. Shimabukuro, and H. Tanaka. Finite analogues of non-Euclidean spaces and Ramanujan graphs.European J. Combin., 25(2):243-259, 2004. (Cited on page 75.) · Zbl 1033.05099
[48] E. Bannai, O. Shimabukuro, and H. Tanaka. Finite Euclidean graphs and Ramanujan graphs.Discrete Math., 309(20):6126-6134, 2009. (Cited on pages 74 and 75.) · Zbl 1208.05046
[49] M. Baˇsi´c and M. D. Petkovi´c.Some classes of integral circulant graphs either allowing or not allowing perfect state transfer.Appl. Math. Lett., 22(10):1609-1615, 2009. (Cited on page 95.) · Zbl 1171.05354
[50] M. Baˇsi´c and M. D. Petkovi´c. Perfect state transfer in integral circulant graphs of non-square-free order.Linear Algebra Appl., 433(1):149-163, 2010. (Cited on page 95.) · Zbl 1221.05104
[51] M. Baˇsi´c, M. D. Petkovi´c, and D. Stevanovi´c. Perfect state transfer in integral circulant graphs.Appl. Math. Lett., 22(7):1117-1121, 2009. (Cited on page 95.) · Zbl 1179.05068
[52] M. Baˇsi´c. Characterization of quantum circulant networks having perfect state transfer.Quantum Inf. Process., 12(1):345-364, 2013. (Cited on page 95.) · Zbl 1309.81043
[53] M. Baˇsi´c. Which weighted circulant networks have perfect state transfer?Inform. Sci., 257:193-209, 2014. (Cited on page 96.) · Zbl 1322.81013
[54] M. Baˇsi´c. Perfect state transfer between non-antipodal vertices in integral circulant graphs.Ars Combin., 122:65-78, 2015. (Cited on page 95.) · Zbl 1374.05076
[55] M. Baˇsi´c and A. Ili´c. On the automorphism group of integral circulant graphs. Electron. J. Combin., 18(1):#P68, 21 pages, 2011. (Cited on page 39.) · Zbl 1217.05165
[56] F. Belardo, S. M. Cioab˘a, J. Koolen, and J. Wang. Open problems in the spectral theory of signed graphs.Art Discrete Appl. Math., 1(2):Paper No. 2.10, 23, 2018. (Cited on pages 131 and 132.) · Zbl 1421.05052
[57] J. Bell and M. Minei. Spectral analysis of the affine graph over the finite ring. Linear Algebra Appl., 414(1):244-265, 2006. (Cited on page 77.) · Zbl 1083.05023
[58] A. Bernasconi, C. D. Godsil, and S. Severini. Quantum networks on cubelike graphs. Phys. Rev. A (3), 78(5):052320, 5 pages, 2008. (Cited on pages 4 and 96.)
[59] P. Berrizbeitia and R. E. Giudici. Counting purek-cycles in sequences of Cayley graphs.Discrete Math., 149(1-3):11-18, 1996. (Cited on page 17.) · Zbl 0844.05050
[60] P. Berrizbeitia and R. E. Giudici. On cycles in the sequence of unitary Cayley graphs.Discrete Math., 282(1-3):239-243, 2004. (Cited on page 17.) · Zbl 1055.05087
[61] K. Bibak, B. M. Kapron, and V. Srinivasan. The Cayley graphs associated with some quasi-perfect Lee codes are Ramanujan graphs.IEEE Trans. Inform. Theory, 62(11):6355-6358, 2016. (Cited on page 79.) · Zbl 1359.94783
[62] N. Biggs.Algebraic Graph Theory. Cambridge University Press, Cambridge, second edition, 1993. (Cited on pages 7, 9, 12, and 16.) · Zbl 0797.05032
[63] G. Bini and F. Flamini.Finite Commutative Rings and Their Applications, volume 680 ofThe Kluwer International Series in Engineering and Computer Science. Kluwer Academic Publishers, Boston, MA, 2002. (Cited on page 8.) · Zbl 1095.13032
[64] S. R. Blackburn and I. E. Shparlinski. On the average energy of circulant graphs. Linear Algebra Appl., 428(8-9):1956-1963, 2008. (Cited on page 61.) · Zbl 1135.05036
[65] J. A. Bondy and U. S. R. Murty.Graph Theory, volume 244 ofGraduate Texts in Mathematics. Springer, New York, 2008. (Cited on pages 4 and 8.) · Zbl 1134.05001
[66] J. Bourgain and A. Gamburd. Uniform expansion bounds for Cayley graphs of SL2(Fp).Ann. of Math. (2), 167(2):625-642, 2008. (Cited on page 7.) · Zbl 1216.20042
[67] W. G. Bridges and R. A. Mena. Rational circulants with rational spectra and cyclic strongly regular graphs.Ars Combin., 8:143-161, 1979. (Cited on page 107.) · Zbl 0443.05046
[68] W. G. Bridges and R. A. Mena. On the rational spectra of graphs with abelian Singer groups.Linear Algebra Appl., 46:51-60, 1982. (Cited on page 20.) · Zbl 0515.05036
[69] W. G. Bridges and R. A. Mena. RationalG-matrices with rational eigenvalues.J. Combin. Theory Ser. A, 32(2):264-280, 1982. (Cited on page 21.) · Zbl 0485.05040
[70] A. E. Brouwer, S. M. Cioab˘a, F. Ihringer, and M. McGinnis. The smallest eigenvalues of Hamming graphs, Johnson graphs and other distance-regular graphs with classical parameters.J. Combin. Theory Ser. B, 133:88-121, 2018. (Cited on pages 90 and 91.) · Zbl 1397.05098
[71] A. E. Brouwer, A. M. Cohen, and A. Neumaier.Distance-Regular Graphs, volume 18 ofErgebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin, 1989. (Cited on pages 7, 13, 25, 94, 106, 109, and 111.) · Zbl 0747.05073
[72] A. E. Brouwer and W. H. Haemers.Spectra of Graphs. Universitext. Springer, New York, 2012. (Cited on page 7.) · Zbl 1231.05001
[73] A. E. Brouwer and J. H. Koolen. The distance-regular graphs of valency four.J. Algebraic Combin., 10(1):5-24, 1999. (Cited on page 109.) · Zbl 0929.05093
[74] R. A. Brualdi. Spectra of digraphs.Linear Algebra Appl., 432(9):2181-2213, 2010. (Cited on page 7.) · Zbl 1221.05177
[75] C. Camarero and C. Mart´ınez. Quasi-perfect Lee codes of radius 2 and arbitrarily large dimension.IEEE Trans. Inform. Theory, 62(3):1183-1192, 2016. (Cited on page 79.) · Zbl 1359.94787
[76] X. Cao, B. Chen, and S. Ling. Perfect state transfer on Cayley graphs over dihedral groups: the non-normal case.Electron. J. Combin., 27(2):#P2.28, 18 pages, 2020. (Cited on pages 101, 102, and 138.) · Zbl 1441.05099
[77] X. Cao and K. Feng. Perfect state transfer on Cayley graphs over dihedral groups. Linear Multilinear Algebra, 0(0):1-18, 2019. (Cited on pages 33, 101, and 102.) · Zbl 1459.05117
[78] X. Cao, K. Feng, and Y.-Y. Tan. Perfect State Transfer on Weighted Abelian Cayley Graphs.Chin. Ann. Math. Ser. B, 42(4):625-642, 2021. (Cited on page 133.) · Zbl 1509.05088
[79] X. Cao, M. Lu, D. Wan, L.-P. Wang, and Q. Wang. Linearized Wenger graphs. Discrete Math., 338(9):1595-1602, 2015. (Cited on page 91.) · Zbl 1311.05079
[80] X. Cao, D. Wang, and K. Feng. Pretty good state transfer on Cayley graphs over dihedral groups.Discrete Math., 343(1):111636, 12, 2020. (Cited on pages 104 and 105.) · Zbl 1429.05121
[81] P. Caputo, T. M. Liggett, and T. Richthammer. Proof of Aldous’ spectral gap conjecture.J. Amer. Math. Soc., 23(3):831-851, 2010. (Cited on pages 82, 84, 85, and 86.) · Zbl 1203.60145
[82] M. Cavers, S. M. Cioab˘a, S. Fallat, D. A. Gregory, W. H. Haemers, S. J. Kirkland, J. J. McDonald, and M. Tsatsomeros. Skew-adjacency matrices of graphs.Linear Algebra Appl., 436(12):4512-4529, 2012. (Cited on page 65.) · Zbl 1241.05070
[83] N. Celniker. Eigenvalue bounds and girths of graphs of finite, upper half-planes. Pacific J. Math., 166(1):1-21, 1994. (Cited on page 76.) · Zbl 0819.05044
[84] N. Celniker, S. Poulos, A. Terras, C. Trimble, and E. Velasquez. Is there life on finite upper half planes?InA tribute to Emil Grosswald: Number Theory and Related Analysis, volume 143 ofContemp. Math., pages 65-88. Amer. Math. Soc., Providence, RI, 1993. (Cited on page 76.) · Zbl 0792.05065
[85] F. Cesi. Cayley graphs on the symmetric group generated by initial reversals have unit spectral gap.Electron. J. Combin., 16(1):#N29, 7 pages, 2009. (Cited on pages 82 and 83.) · Zbl 1185.05079
[86] F. Cesi. On the eigenvalues of Cayley graphs on the symmetric group generated by a complete multipartite set of transpositions.J. Algebraic Combin., 32(2):155-185, 2010. (Cited on page 82.) · Zbl 1221.05196
[87] F. Cesi. A few remarks on the octopus inequality and Aldous’ spectral gap conjecture.Comm. Algebra, 44(1):279-302, 2016. (Cited on pages 82 and 86.) · Zbl 1334.05057
[88] F. Cesi. On the spectral gap of some Cayley graphs on the Weyl groupW(Bn). Linear Algebra Appl., 586:274-295, 2020. (Cited on pages 85, 86, and 138.) · Zbl 1429.05089
[89] C.-L. Chai and W.-C. W. Li. Character sums, automorphic forms, equidistribution, and Ramanujan graphs. II. Eigenvalues of Terras graphs.Forum Math., 16(5):631- 661, 2004. (Cited on page 76.) · Zbl 1065.11047
[90] A. Chan, G. Coutinho, C. Tamon, L. Vinet, and H. Zhan. Fractional revival and association schemes.Discrete Math., 343(11):112018, 15, 2020. (Cited on page 103.) · Zbl 1447.05242
[91] A. Chan and C. D. Godsil. Symmetry and eigenvectors. InGraph Symmetry (Montreal, PQ, 1996), volume 497 ofNATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., pages 75-106. Kluwer Acad. Publ., Dordrecht, 1997. (Cited on page 7.) · Zbl 0883.05097
[92] G. Chapuy and V. F´eray. A note on a Cayley graph ofSn.arXiv:1202.4976, 2012. (Cited on page 27.)
[93] S. Chattopadhyay and P. Panigrahi. Some relations between power graphs and Cayley graphs.J. Egyptian Math. Soc., 23(3):457-462, 2015. (Cited on page 129.) · Zbl 1328.05079
[94] B. F. Chen, E. Ghorbani, and K. B. Wong. On the eigenvalues of certain Cayley graphs and arrangement graphs.Linear Algebra Appl., 444:246-253, 2014. (Cited on pages 27 and 28.) · Zbl 1285.05087
[95] Q. Chen and C. D. Godsil. Pair state transfer.Quantum Inf. Process., 19(9):Paper No. 321, 30, 2020. (Cited on page 133.) · Zbl 1509.05114
[96] T. Cheng, L. Feng, and H. Huang. Integral Cayley graphs over dicyclic group. Linear Algebra Appl., 566:121-137, 2019. (Cited on pages 34 and 35.) · Zbl 1410.05118
[97] W.-C. Cheung and C. D. Godsil. Perfect state transfer in cubelike graphs.Linear Algebra Appl., 435(10):2468-2474, 2011. (Cited on page 96.) · Zbl 1222.05150
[98] M. Christandl, N. Datta, T. C. Dorlas, A. Ekert, A. Kay, and A. J. Landahl. Perfect transfer of arbitrary states in quantum spin networks.Physical Review A, 71(3):032312, 2005. (Cited on page 93.)
[99] M. Christandl, N. Datta, A. Ekert, and A. J. Landahl. Perfect state transfer in quantum spin networks.Physical Review Letters, 92(18):187902, 2004. (Cited on pages 93, 94, and 96.)
[100] D. Christofides and K. Markstr¨om. Expansion properties of random Cayley graphs and vertex transitive graphs via matrix martingales.Random Structures Algorithms, 32(1):88-100, 2008. (Cited on page 126.) · Zbl 1130.05030
[101] F. R. K. Chung and R. Graham. Sparse quasi-random graphs.Combinatorica, 22(2):217-244, 2002. (Cited on page 127.) · Zbl 0997.05090
[102] F. R. K. Chung and J. Tobin. The spectral gap of graphs arising from substring reversals.Electron. J. Combin., 24(3):#P3.4, 18 pages, 2017. (Cited on page 83.) · Zbl 1368.05093
[103] F. R. K. Chung. Diameters and eigenvalues.J. Amer. Math. Soc., 2(2):187-196, 1989. (Cited on pages 117, 118, and 124.) · Zbl 0678.05037
[104] S. M. Cioab˘a. Closed walks and eigenvalues of abelian Cayley graphs.C. R. Math. Acad. Sci. Paris, 342(9):635-638, 2006. (Cited on pages 66 and 89.) · Zbl 1102.05031
[105] S. M. Cioab˘a. On the extreme eigenvalues of regular graphs.J. Combin. Theory Ser. B, 96(3):367-373, 2006. (Cited on page 89.) · Zbl 1137.05042
[106] S. M. Cioab˘a, R. J. Elzinga, M. Markiewitz, K. Vander Meulen, and T. Vanderwoerd. Addressing graph products and distance-regular graphs.Discrete Appl. Math., 229:46-54, 2017. (Cited on page 127.) · Zbl 1367.05176
[107] S. M. Cioab˘a, F. Lazebnik, and W. Li. On the spectrum of Wenger graphs.J. Combin. Theory Ser. B, 107:132-139, 2014. (Cited on page 91.) · Zbl 1298.05199
[108] S. M. Cioab˘a, F. Lazebnik, and S. Sun. Spectral and combinatorial properties of some algebraically defined graphs.Electron. J. Combin., 25(4):#P4.60, 16 pages, 2018. (Cited on pages 92 and 93.) · Zbl 1410.05121
[109] S. M. Cioab˘a, G. Royle, and Z. K. Tan. On the flip graphs on perfect matchings of complete graphs and signed reversal graphs.Australas. J. Combin., 81:480-497, 2021. (Cited on pages 83 and 137.) · Zbl 1482.05267
[110] S. M. Cioab˘a and M. Tait. More counterexamples to the Alon-Saks-Seymour and rank-coloring conjectures.Electron. J. Combin., 18(1):#P26, 9 pages, 2011. (Cited on page 23.) · Zbl 1215.05059
[111] D. Conlon and Y. Zhao. Quasirandom Cayley graphs.Discrete Anal., Paper No. 6, 14 pages, 2017. (Cited on page 127.) · Zbl 1404.05190
[112] G. Coutinho, C. D. Godsil, K. Guo, and F. Vanhove. Perfect state transfer on distance-regular graphs and association schemes.Linear Algebra Appl., 478:108- 130, 2015. (Cited on pages 93 and 94.) · Zbl 1312.05147
[113] G. Criscuolo, C. M. Kwok, A. Mowshowitz, and R. Tortora. The group and the minimal polynomial of a graph.J. Combin. Theory Ser. B, 29(3):293-302, 1980. (Cited on page 16.) · Zbl 0452.05050
[114] D. Cvetkovi´c, P. Rowlinson, and S. Simi´c.An Introduction to the Theory of Graph Spectra, volume 75 ofLondon Mathematical Society Student Texts. Cambridge University Press, Cambridge, 2010. (Cited on pages 4, 23, 24, 106, and 110.) · Zbl 1211.05002
[115] I. Dai. Diameter bounds and recursive properties of full-flag Johnson graphs.Discrete Math., 341(7):1932-1944, 2018. (Cited on page 88.) · Zbl 1387.05110
[116] N. N. Dai, N. M. Hai, D. D. Hieu, and L. A. Vinh. Integral Cayley graphs generated by distance sets in vector spaces over finite fields.Electron. J. Combin., 20(1):#P29, 6 pages, 2013. (Cited on pages 22 and 23.) · Zbl 1266.05060
[117] C. Dalf´o and M. A. Fiol. Spectra and eigenspaces from regular partitions of Cayley (di)graphs of permutation groups.Linear Algebra Appl., 597:94-112, 2020. (Cited on page 131.) · Zbl 1437.05134
[118] C. Dalf´o, M. A. Fiol, S. Pavl´ıkv´a, and J. ˇSir´aˇn. Spectra and eigenspaces of arbitrary lifts of digraphs.J. Algebraic Combin., 54:651-672, 2021. (Cited on page 131.) · Zbl 1477.05103
[119] C. Dalf´o, M. A. Fiol, and J. ˇSir´aˇn. The spectra of lifted digraphs.J. Algebraic Combin., 50(4):419-426, 2019. (Cited on page 131.) · Zbl 1429.05083
[120] E. R. van Dam and W. H. Haemers. Which graphs are determined by their spectrum?Linear Algebra Appl., 373:241-272, 2003. Special issue on the Combinatorial Matrix Theory Conference (Pohang, 2002). (Cited on page 41.) · Zbl 1026.05079
[121] E. R. van Dam and W. H. Haemers. Developments on spectral characterizations of graphs.Discrete Math., 309(3):576-586, 2009. (Cited on page 41.) · Zbl 1205.05156
[122] E. R. van Dam and M. Jazaeri. Distance-regular Cayley graphs with small valency. Ars Math. Contemp., 17(1):203-222, 2019. (Cited on page 109.) · Zbl 1439.05233
[123] E. R. van Dam, J. H. Koolen, and H. Tanaka. Distance-regular graphs.Electron. J. Combin., #DS22, 156 pages, 2016. (Cited on pages 7 and 106.) · Zbl 1335.05062
[124] E. R. van Dam and R. Sotirov. New bounds for the max-k-cut and chromatic number of a graph.Linear Algebra Appl., 488:216-234, 2016. (Cited on page 90.) · Zbl 1326.05089
[125] G. Davidoff, P. Sarnak, and A. Valette.Elementary Number Theory, Group Theory, and Ramanujan Graphs, volume 55 ofLondon Mathematical Society Student Texts. Cambridge University Press, Cambridge, 2003. (Cited on pages 7, 66, and 89.) · Zbl 1032.11001
[126] M. W. Davis.The Geometry and Topology of Coxeter Groups, volume 32 ofLondon Mathematical Society Monographs Series. Princeton University Press, Princeton, NJ, 2008. (Cited on page 81.) · Zbl 1142.20020
[127] N. de Beaudrap. On restricted unitary Cayley graphs and symplectic transformations modulon.Electron. J. Combin., 17(1):#R69, 26 pages, 2010. (Cited on page 47.) · Zbl 1214.05020
[128] M. J. de Resmini and D. Jungnickel. Strongly regular semi-Cayley graphs.J. Algebraic Combin., 1(2):171-195, 1992. (Cited on pages 111, 114, 115, 116, and 117.) · Zbl 0801.05070
[129] M. DeDeo, D. Lanphier, and M. Minei. The spectrum of Platonic graphs over finite fields.Discrete Math., 307(9-10):1074-1081, 2007. (Cited on page 78.) · Zbl 1114.05079
[130] M. DeDeo, M. Mart´ınez, A. Medrano, M. Minei, H. Stark, and A. Terras. Spectra of Heisenberg graphs over finite rings.Discrete Contin. Dyn. Syst., (suppl.):213- 222, 2003. Dynamical systems and differential equations (Wilmington, NC, 2002). (Cited on page 78.) · Zbl 1054.11063
[131] M. R. DeDeo. Non-Ramanujancy of Euclidean graphs of order 2r.Discrete Math., 265(1-3):45-57, 2003. (Cited on pages 73 and 74.) · Zbl 1018.05060
[132] Y.-P. Deng and X.-D. Zhang. A note on eigenvalues of the derangement graph.Ars Combin., 101:289-299, 2011. (Cited on pages 29 and 85.) · Zbl 1265.05294
[133] M. DeVos, L. Goddyn, B. Mohar, and R. ˇS´amal. Cayley sum graphs and eigenvalues of (3,6)-fullerenes.J. Combin. Theory Ser. B, 99(2):358-369, 2009. (Cited on page 118.) · Zbl 1217.05140
[134] M. DeVos, R. Krakovski, B. Mohar, and A. S. Ahmady. Integral Cayley multigraphs over Abelian and Hamiltonian groups.Electron. J. Combin., 20(2):#P63, 16 pages, 2013. (Cited on pages 21 and 22.) · Zbl 1298.05158
[135] P. Diaconis and M. Shahshahani. Generating a random permutation with random transpositions.Z. Wahrsch. Verw. Gebiete, 57(2):159-179, 1981. (Cited on pages 13, 82, and 88.) · Zbl 0485.60006
[136] P. Diaconis and D. Stroock. Geometric bounds for eigenvalues of Markov chains. Ann. Appl. Probab., 1(1):36-61, 1991. (Cited on page 90.) · Zbl 0731.60061
[137] D. Z. Djokovi´c. Isomorphism problem for a special class of graphs.Acta Math. Acad. Sci. Hungar., 21:267-270, 1970. (Cited on page 42.) · Zbl 0205.54504
[138] J. Dodziuk. Difference equations, isoperimetric inequality and transience of certain random walks.Trans. Amer. Math. Soc., 284(2):787-794, 1984. (Cited on page 66.) · Zbl 0512.39001
[139] A. Droll. A classification of Ramanujan unitary Cayley graphs.Electron. J. Combin., 17(1):#N29, 6 pages, 2010. (Cited on page 66.) · Zbl 1189.05147
[140] J. E. Ducey and D. M. Jalil. Integer invariants of abelian Cayley graphs.Linear Algebra Appl., 445:316-325, 2014. (Cited on page 122.) · Zbl 1285.05088
[141] D. S. Dummit and R. M. Foote.Abstract Algebra.John Wiley & Sons, Inc., Hoboken, NJ, third edition, 2004. (Cited on page 45.) · Zbl 1037.00003
[142] D. Ellis. Setwise intersecting families of permutations.J. Combin. Theory Ser. A, 119(4):825-849, 2012. (Cited on page 133.) · Zbl 1237.05210
[143] D. Ellis, E. Friedgut, and H. Pilpel. Intersecting families of permutations.J. Amer. Math. Soc., 24(3):649-682, 2011. (Cited on page 26.) · Zbl 1285.05171
[144] B. Elspas and J. Turner. Graphs with circulant adjacency matrices.J. Combinatorial Theory, 9:297-307, 1970. (Cited on pages 42 and 43.) · Zbl 0212.29602
[145] I. Est´elyi and I. Kov´acs. On groups all of whose undirected Cayley graphs of bounded valency are integral.Electron. J. Combin., 21(4):#P4.45, 11 pages, 2014. (Cited on page 37.) · Zbl 1305.05100
[146] X. G. Fang, C. H. Li, and C. E. Praeger. On orbital regular graphs and Frobenius graphs.Discrete Math., 182(1-3):85-99, 1998. (Cited on pages 89 and 90.) · Zbl 0904.05038
[147] L. Flatto, A. M. Odlyzko, and D. B. Wales. Random shuffles and group representations.Ann. Probab., 13(1):154-178, 1985. (Cited on pages 27, 81, 82, and 88.) · Zbl 0564.60007
[148] B. Foster-Greenwood and C. Kriloff. Spectra of Cayley graphs of complex reflection groups.J. Algebraic Combin., 44(1):33-57, 2016. (Cited on pages 14 and 129.) · Zbl 1342.05084
[149] J. Friedman. Some graphs with small second eigenvalue.Combinatorica, 15(1):31- 42, 1995. (Cited on pages 89 and 124.) · Zbl 0843.05076
[150] J. Friedman. On Cayley graphs on the symmetric group generated by transpositions. Combinatorica, 20(4):505-519, 2000. (Cited on pages 81 and 82.) · Zbl 0996.05066
[151] J. Friedman, R. Murty, and J.-P. Tillich. Spectral estimates for abelian Cayley graphs.J. Combin. Theory Ser. B, 96(1):111-121, 2006. (Cited on pages 66, 88, and 89.) · Zbl 1083.05024
[152] E.FuchsandJ.Sinz.LongestinducedcyclesinCayleygraphs. arXiv:math/0410308, 2004. (Cited on page 17.)
[153] E. D. Fuchs. Longest induced cycles in circulant graphs.Electron. J. Combin, 12(1):#R52, 12 pages, 2005. (Cited on page 17.) · Zbl 1082.05053
[154] X. Gao, H. L¨u, and Y. Hao. The Laplacian and signless Laplacian spectrum of semi-Cayley graphs over abelian groups.J. Appl. Math. Comput., 51(1-2):383-395, 2016. (Cited on page 112.) · Zbl 1339.05230
[155] X. Gao and Y. Luo. The spectrum of semi-Cayley graphs over abelian groups.Linear Algebra Appl., 432(11):2974-2983, 2010. (Cited on pages 31, 34, 111, and 112.) · Zbl 1195.05042
[156] X. Gao, Y. Luo, and W. Liu. Resistance distances and the Kirchhoff index in Cayley graphs.Discrete Appl. Math., 159(17):2050-2057, 2011. (Cited on page 132.) · Zbl 1237.05096
[157] M. Ghasemi. Integral pentavalent Cayley graphs on abelian or dihedral groups. Proc. Indian Acad. Sci. Math. Sci., 127(2):219-224, 2017. (Cited on page 36.) · Zbl 1364.05036
[158] M. Ghorbani. On the eigenvalues of normal edge-transitive Cayley graphs.Bull. Iranian Math. Soc., 41(1):101-107, 2015. (Cited on page 130.) · Zbl 1335.05109
[159] M. Ghorbani. On the energy and Estrada index of Cayley graphs.Discrete Math. Algorithms Appl., 7(1):1550005, 8 pages, 2015. (Cited on page 65.) · Zbl 1309.05118
[160] M. Ghorbani and F. Nowroozi-Larki. On the spectrum of Cayley graphs.Sib. Elektron. Mat. Izv.‘, 13:1283-1289, 2016. (Cited on page 14.) · Zbl 1372.20005
[161] M. Ghorbani and F. Nowroozi-Larki. On the spectrum of Cayley graphs related to the finite groups.Filomat, 31(20):6419-6429, 2017. (Cited on page 14.) · Zbl 1499.05276
[162] M. Ghorbani and F. Nowroozi-Larki. On the spectrum of finite Cayley graphs.J. Discrete Math. Sci. Cryptogr., 21(1):83-112, 2018. (Cited on page 14.) · Zbl 1481.05095
[163] M. Ghorbani, A. Seyed-Hadi, and F. Nowroozi-Larki. Computing the eigenvalues of Cayley graphs of orderp2q.J. Algebr. Syst., 7(2):189-203, 1, 2020. (Cited on page 14.) · Zbl 1468.05152
[164] C. D. Godsil. Periodic graphs.Electron. J. Combin., 18(1):#P23, 15 pages, 2011. (Cited on pages 93, 103, and 105.) · Zbl 1213.05166
[165] C. D. Godsil. State transfer on graphs.Discrete Math., 312(1):129-147, 2012. (Cited on pages 93, 94, 95, 96, and 103.) · Zbl 1232.05123
[166] C. D. Godsil. When can perfect state transfer occur?Electron. J. Linear Algebra, 23:877-890, 2012. (Cited on page 93.) · Zbl 1253.05093
[167] C. D. Godsil and K. Meagher.Erd˝os-Ko-Rado Theorems: Algebraic Approaches, volume 149 ofCambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2016. (Cited on pages 7 and 26.) · Zbl 1343.05002
[168] C. D. Godsil and G. Royle.Algebraic Graph Theory, volume 207 ofGraduate Texts in Mathematics. Springer-Verlag, New York, 2001. (Cited on pages 4, 7, 26, and 87.) · Zbl 0968.05002
[169] C. D. Godsil and P. Spiga. Rationality conditions for the eigenvalues of normal finite Cayley graphs.arXiv:1402.5494, 2014. (Cited on page 20.)
[170] C. D. Godsil and H. Zhan. Uniform mixing on Cayley graphs.Electron. J. Combin., 24(3):#P3.20, 27 pages, 2017. (Cited on pages 132 and 133.) · Zbl 1369.05104
[171] C. D. Godsil. Eigenvalues of graphs and digraphs.Linear Algebra Appl., 46:43-50, 1982. (Cited on page 123.) · Zbl 0492.05032
[172] M. X. Goemans and D. P. Williamson. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming.J. Assoc. Comput. Mach., 42(6):1115-1145, 1995. (Cited on page 90.) · Zbl 0885.68088
[173] S. Goryainov, V. Kabanov, E. Konstantinova, L. Shalaginov, and A. Valyuzhenich. P I-eigenfunctions of the star graphs.Linear Algebra Appl., 586:7-27, 2020. (Cited on page 27.) · Zbl 1429.05125
[174] W. T. Gowers. Quasirandom groups.Combin. Probab. Comput., 17(3):363-387, 2008. (Cited on page 127.) · Zbl 1191.20016
[175] R. L. Graham and H. O. Pollak. On the addressing problem for loop switching.Bell System Tech. J., 50:2495-2519, 1971. (Cited on page 127.) · Zbl 0228.94020
[176] R. Grigorchuk, P.-H. Leemann, and T. Nagnibeda. Lamplighter groups, de Brujin graphs, spider-web graphs and their spectra.J. Phys. A, 49(20):205004, 35 pages, 2016. (Cited on page 133.) · Zbl 1345.05043
[177] R. I. Grigorchuk and P. W. Nowak. Diameters, distortion, and eigenvalues.European J. Combin., 33(7):1574-1587, 2012. (Cited on page 132.) · Zbl 1246.05046
[178] P. E. Gunnells, R. A. Scott, and B. L. Walden. On certain integral Schreier graphs of the symmetric group.Electron. J. Combin., 14(1):#R43, 26 pages, 2007. (Cited on page 82.) · Zbl 1123.05048
[179] K. Guo and B. Mohar.Simple eigenvalues of cubic vertex-transitive graphs. arXiv:2002.05694, 2020. (Cited on page 16.)
[180] W. Guo, D. V. Lytkina, V. D. Mazurov, and D. O. Revin. Integral Cayley graphs. Algebra and Logic, 58(4):297-305, 2019. (Cited on pages 20 and 31.) · Zbl 1434.05069
[181] C. K. Gupta, B. Shwetha Shetty, and V. Lokesha. On the graph of nilpotent matrix group of length one.Discrete Math. Algorithms Appl., 8(1):1650009, 31 pages, 2016. (Cited on page 130.) · Zbl 1333.05142
[182] I. Gutman. The energy of a graph.Ber. Math.-Statist. Sekt. Forsch. Graz, (100105):Ber. No. 103, 22, 1978. 10. Steierm¨arkisches Mathematisches Symposium (Stift Rein, Graz, 1978). (Cited on page 51.) · Zbl 0402.05040
[183] I. Gutman. Hyperenergetic molecular graphs.Journal of the Serbian Chemical Society, 64(3):199-205, 1999. (Cited on page 51.)
[184] S. Handjani and D. Jungreis. Rate of convergence for shuffling cards by transpositions.J. Theoret. Probab., 9(4):983-993, 1996. (Cited on page 82.) · Zbl 0878.60043
[185] Y. Hao, X. Gao, and Y. Luo. On the Cayley graphs of Brandt semigroups.Comm. Algebra, 39(8):2874-2883, 2011. (Cited on page 117.) · Zbl 1232.20064
[186] F. Harary and A. J. Schwenk. Which graphs have integral spectra? InGraphs and Combinatorics (Proc. Capital Conf., George Washington Univ., Washington, D.C., 1973), pages 45-51. Lecture Notes in Math., Vol. 406. Springer, Berlin, 1974. (Cited on page 16.)
[187] G. H. Hardy and E. M. Wright.An Introduction to the Theory of Numbers. Oxford University Press, Oxford, sixth edition, 2008. Revised by D. R. Heath-Brown and J. H. Silverman, With a foreword by Andrew Wiles. (Cited on pages 8 and 18.) · Zbl 1159.11001
[188] H. A. Harutyunyan and C. D. Morosan. The spectra of Kn¨odel graphs.Informatica (Ljubl.), 30(3):295-299, 2006. (Cited on page 134.) · Zbl 1107.68066
[189] M.-C. Heydemann. Cayley graphs and interconnection networks. InGraph symmetry (Montreal, PQ, 1996), volume 497 ofNATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., pages 167-224. Kluwer Acad. Publ., Dordrecht, 1997. (Cited on pages 89 and 134.) · Zbl 0885.05075
[190] M. Hirano, K. Katata, and Y. Yamasaki. Ramanujan circulant graphs and the conjecture of Hardy-Littlewood and Bateman-Horn.arXiv:1310.2130, 2015. (Cited on page 79.)
[191] M. Hirano, K. Katata, and Y. Yamasaki. Ramanujan Cayley graphs of Frobenius groups.Bull. Aust. Math. Soc., 94(3):373-383, 2016. (Cited on pages 79 and 80.) · Zbl 1360.05097
[192] S. Hoory, N. Linial, and A. Wigderson. Expander graphs and their applications. Bull. Amer. Math. Soc. (N.S.), 43(4):439-561, 2006. (Cited on pages 4, 6, 7, 66, and 126.) · Zbl 1147.68608
[193] H. Huang and B. Sudakov. A counterexample to the Alon-Saks-Seymour conjecture and related problems.Combinatorica, 32(2):205-219, 2012. (Cited on page 23.) · Zbl 1299.05123
[194] J. Huang and S. Li. Integral and distance integral Cayley graphs over generalized dihedral groups.J. Algebraic Combin., 53(4):921-943, 2021. (Cited on pages 33 and 129.) · Zbl 1467.05112
[195] Q. Huang and A. Chang. Circulant digraphs determined by their spectra.Discrete Math., 240(1-3):261-270, 2001. (Cited on page 43.) · Zbl 1004.05040
[196] X. Huang and Q. Huang. The second largest eigenvalues of some Cayley graphs on alternating groups.J. Algebraic Combin., 50(1):99-111, 2019. (Cited on page 88.) · Zbl 1415.05106
[197] X. Huang, Q. Huang, and S. M. Cioab˘a. The second eigenvalue of some normal Cayley graphs of highly transitive groups.Electron. J. Combin., 26(2):#P2.44, 28 pages, 2019. (Cited on pages 87 and 88.) · Zbl 1416.05174
[198] X. Y. Huang, Q. X. Huang, and L. Lu. Enumeration of cubic Cayley graphs on dihedral groups.Acta Math. Sin. (Engl. Ser.), 33(7):996-1010, 2017. (Cited on pages 31, 44, and 136.) · Zbl 1375.05127
[199] D. R. Hughes, J. V. van Lint, and R. M. Wilson.Announcement at the Seventh British Combinatorial Conference. Cambridge, 1979 (unpublished). (Cited on page 107.)
[200] A. Ili´c. The energy of unitary Cayley graphs.Linear Algebra Appl., 431(10):1881- 1889, 2009. (Cited on pages 52 and 53.) · Zbl 1175.05086
[201] A. Ili´c. Distance spectra and distance energy of integral circulant graphs.Linear Algebra Appl., 433(5):1005-1014, 2010. (Cited on page 127.) · Zbl 1215.05105
[202] A. Ili´c and M. Baˇsi´c. New results on the energy of integral circulant graphs.Appl. Math. Comput., 218(7):3470-3482, 2011. (Cited on pages 43, 52, and 53.) · Zbl 1242.05163
[203] G. Indulal. Distance spectrum of graph compositions.Ars Math. Contemp., 2(1):93- 100, 2009. (Cited on page 127.) · Zbl 1182.05047
[204] I. M. Isaacs.Character Theory of Finite Groups. AMS Chelsea Publishing, Providence, RI, 2006. (Cited on pages 10, 11, and 28.) · Zbl 1119.20005
[205] I. M. Isaacs.Finite Group Theory, volume 92 ofGraduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2008. (Cited on page 8.) · Zbl 1169.20001
[206] I. Ivrissimtzis and N. Peyerimhoff.Spectral representations of vertex transitive graphs, Archimedean solids and finite Coxeter groups.Groups Geom. Dyn., 7(3):591-615, 2013. (Cited on page 87.) · Zbl 1277.05108
[207] G. James and M. Liebeck.Representations and Characters of Groups. Cambridge University Press, New York, second edition, 2001. (Cited on pages 10, 11, 28, 34, and 35.) · Zbl 0981.20004
[208] S. Johnson, A. Shaheen, and G. Subuyuj. The isoperimetric number of a generalized Paley graph.Serdica Math. J., 42(3-4):235-250, 2016. (Cited on pages 50 and 130.) · Zbl 1488.05235
[209] G. A. Jones and R. Jajcay. Cayley properties of merged Johnson graphs.J. Algebraic Combin., 44(4):1047-1067, 2016. (Cited on page 91.) · Zbl 1352.05086
[210] A.-A. A. Jucys. Symmetric polynomials and the center of the symmetric group ring. Rep. Mathematical Phys., 5(1):107-112, 1974. (Cited on page 27.) · Zbl 0288.20014
[211] K. Kalpakis and Y. Yesha. On the bisection width of the transposition network. Networks, 29(1):69-76, 1997. (Cited on pages 31 and 87.) · Zbl 0874.05029
[212] M.-H. Kang. Toroidal fullerenes with the Cayley graph structures.Discrete Math., 311(21):2384-2395, 2011. (Cited on page 129.) · Zbl 1238.05068
[213] H. Karloff. How good is the Goemans-Williamson MAX CUT algorithm?SIAM J. Comput., 29(1):336-350, 1999. (Cited on page 91.) · Zbl 0942.90033
[214] M. Kassabov.Subspace arrangements and property T.Groups Geom. Dyn., 5(2):445-477, 2011. (Cited on pages 85 and 86.) · Zbl 1244.20041
[215] A. Kay. Perfect, efficient, state transfer and its application as a constructive tool. International Journal of Quantum Information, 8(04):641-676, 2010. (Cited on page 93.) · Zbl 1194.81046
[216] M. Kempton, G. Lippner, and S.-T. Yau. Pretty good quantum state transfer in symmetric spin networks via magnetic field.Quantum Inf. Process., 16(9):Paper No. 210, 23, 2017. (Cited on page 103.) · Zbl 1382.81049
[217] E. N. Khomyakova and E. V. Konstantinova. Note on exact values of multiplicities of eigenvalues of the star graph.Sib. ‘Elektron. Mat. Izv., 12:92-100, 2015. (Cited on page 27.) · Zbl 1341.05152
[218] E. I. Khukhro and V. D. Mazurov. Unsolved Problems in Group Theory, The Kourovka Notebook, No. 19, Sobolev Institute of Mathematics.arXiv:1401.0300, 2014. (Cited on pages 20 and 31.) · Zbl 1372.20001
[219] D. Kiani, M. M. H. Aghaei, Y. Meemark, and B. Suntornpoch. Energy of unitary Cayley graphs and gcd-graphs.Linear Algebra Appl., 435(6):1336-1343, 2011. (Cited on pages 45, 46, 61, and 64.) · Zbl 1222.05099
[220] D. Kiani and M. Mollahajiaghaei. On the unitary Cayley graphs of matrix algebras. Linear Algebra Appl., 466:421-428, 2015. (Cited on page 109.) · Zbl 1303.05085
[221] K. Kimoto. Spectra of group-subgroup pair graphs. InMathematical Modelling for Next-generation Cryptography, volume 29 ofMath. Ind. (Tokyo), pages 139-157. Springer, Singapore, 2018. (Cited on page 121.)
[222] M. Klin and I. Kov´acs. Automorphism groups of rational circulant graphs.Electron. J. Combin., 19(1):#P35, 52 pages, 2012. (Cited on page 39.) · Zbl 1244.05234
[223] W. Klotz and T. Sander. Some properties of unitary Cayley graphs.Electron. J. Combin., 14(1):#R45, 12 pages, 2007. (Cited on pages 17 and 18.) · Zbl 1121.05059
[224] W. Klotz and T. Sander. Integral Cayley graphs over abelian groups.Electron. J. Combin., 17(1):#R81, 13 pages, 2010. (Cited on pages 18, 19, 24, 25, 26, and 36.) · Zbl 1189.05074
[225] W. Klotz and T. Sander. Wie kommt Sudoku zu ganzzahligen Eigenwerten?Math. Semesterber., 57(2):169-183, 2010. (Cited on page 25.) · Zbl 1203.05095
[226] W. Klotz and T. Sander. Integral Cayley graphs defined by greatest common divisors.Electron. J. Combin., 18(1):#P94, 15 pages, 2011. (Cited on pages 19 and 24.) · Zbl 1217.05105
[227] W. Klotz and T. Sander. Distance powers and distance matrices of integral Cayley graphs over abelian groups.Electron. J. Combin., 19(4):#P25, 8 pages, 2012. (Cited on page 20.) · Zbl 1266.05058
[228] W. Klotz and T. Sander. GCD-graphs and NEPS of complete graphs.Ars Math. Contemp., 6(2):289-299, 2013. (Cited on pages 24 and 99.) · Zbl 1290.05084
[229] Y. Kohayakawa, V. R¨odl, and M. Schacht. Discrepancy and eigenvalues of Cayley graphs.Czechoslovak Math. J., 66(141)(3):941-954, 2016. (Cited on page 126.) · Zbl 1413.05356
[230] T. Koma and B. Nachtergaele. The spectral gap of the ferromagneticXXZchain. Lett. Math. Phys., 40(1):1-16, 1997. (Cited on page 82.) · Zbl 0880.60103
[231] E. V. Konstantinova and D. Lytkina. Integral Cayley graphs over finite groups. Algebra Colloq., 27(1):131-136, 2020. (Cited on pages 20 and 31.) · Zbl 1433.05199
[232] J. H. Koolen and V. Moulton.Maximal energy graphs.Adv. in Appl. Math., 26(1):47-52, 2001. (Cited on page 51.) · Zbl 0976.05040
[233] E. Kowalski.An Introduction to Expander Graphs, volume 26 ofCours Sp´ecialis´es [Specialized Courses]. Soci´et´e Math´ematique de France, Paris, 2019. (Cited on page 7.) · Zbl 1421.05002
[234] R. Krakovski and B. Mohar. Spectrum of Cayley graphs on the symmetric group generated by transpositions.Linear Algebra Appl., 437(3):1033-1039, 2012. (Cited on page 27.) · Zbl 1243.05149
[235] M. Krebs and A. Shaheen.Expander Families and Cayley Graphs - A Beginner’s Guide. Oxford University Press, Oxford, 2011. (Cited on pages 7, 31, 66, and 83.) · Zbl 1238.05221
[236] M. Krivelevich and B. Sudakov. Pseudo-random graphs. InMore Sets, Graphs and Numbers, volume 15 ofBolyai Soc. Math. Stud., pages 199-262. Springer, Berlin, 2006. (Cited on page 127.) · Zbl 1098.05075
[237] C. Y. Ku, T. Lau, and K. B. Wong. Cayley graph on symmetric group generated by elements fixingkpoints.Linear Algebra Appl., 471:405-426, 2015. (Cited on page 30.) · Zbl 1307.05143
[238] C. Y. Ku, T. Lau, and K. B. Wong. Largest independent sets of certain regular subgraphs of the derangement graph.J. Algebraic Combin., 44(1):81-98, 2016. (Cited on page 29.) · Zbl 1342.05101
[239] C. Y. Ku, T. Lau, and K. B. Wong. The smallest eigenvalues of the 1-point fixing graph.Linear Algebra Appl., 493:433-446, 2016. (Cited on pages 30 and 85.) · Zbl 1329.05192
[240] C. Y. Ku, T. Lau, and K. B. Wong. On the partition associated to the smallest eigenvalues of thek-point fixing graph.European J. Combin., 63:70-94, 2017. (Cited on page 30.) · Zbl 1365.05178
[241] C. Y. Ku, T. Lau, and K. B. Wong. The spectrum of eigenvalues for certain subgraphs of thek-point fixing graph.Linear Algebra Appl., 543:72-91, 2018. (Cited on pages 30 and 31.) · Zbl 1387.05157
[242] C. Y. Ku and D. B. Wales. Eigenvalues of the derangement graph.J. Combin. Theory Ser. A, 117(3):289-312, 2010. (Cited on page 29.) · Zbl 1209.05145
[243] C. Y. Ku and K. B. Wong. Solving the Ku-Wales conjecture on the eigenvalues of the derangement graph.European J. Combin., 34(6):941-956, 2013. (Cited on page 29.) · Zbl 1285.05116
[244] C. Y. Ku and T. W. H. Wong. Intersecting families in the alternating group and direct product of symmetric groups.Electron. J. Combin., 14(1):#R25, 15 pages, 2007. (Cited on page 29.) · Zbl 1111.05093
[245] K. Kutnar, A. Malniˇc, L. Mart´ınez, and D. Maruˇsiˇc. Quasim-Cayley strongly regular graphs.J. Korean Math. Soc., 50(6):1199-1211, 2013. (Cited on page 117.) · Zbl 1278.05250
[246] K. Kutnar, D. Maruˇsiˇc, ˇS. Miklaviˇc, and P. ˇSparl.Strongly regular tri-Cayley graphs.European J. Combin., 30(4):822-832, 2009. (Cited on page 116.) · Zbl 1228.05316
[247] J. D. Lafferty and D. N. Rockmore. Level spacings for Cayley graphs. InEmerging Applications of Number Theory (Minneapolis, MN, 1996), volume 109 ofIMA Vol. Math. Appl., pages 373-386. Springer, New York, 1999. (Cited on page 132.) · Zbl 0962.05026
[248] Z. Landau and A. Russell. Random Cayley graphs are expanders: a simple proof of the Alon-Roichman theorem.Electron. J. Combin., 11(1):#R62, 6 pages, 2004. (Cited on page 125.) · Zbl 1053.05060
[249] F. Lazebnik, S. Sun, and Y. Wang. Some families of graphs, hypergraphs and digraphs defined by systems of equations: a survey. InSelected Topics in Graph Theory and Its Applications, volume 14 ofLect. Notes Semin. Interdiscip. Mat., pages 105-142. Semin. Interdiscip. Mat. (S.I.M.), Potenza, 2017. (Cited on pages 91 and 92.) · Zbl 1373.05094
[250] F. Lazebnik and A. J. Woldar. General properties of some families of graphs defined by systems of equations.J. Graph Theory, 38(2):65-86, 2001. (Cited on page 91.) · Zbl 0990.05080
[251] T. A. Le and J. W. Sander. Convolutions of Ramanujan sums and integral circulant graphs.Int. J. Number Theory, 8(7):1777-1788, 2012. (Cited on pages 53, 54, 55, and 56.) · Zbl 1290.11003
[252] T. A. Le and J. W. Sander. Extremal energies of integral circulant graphs via multiplicativity.Linear Algebra Appl., 437(6):1408-1421, 2012. (Cited on pages 55, 59, 60, and 136.) · Zbl 1243.05150
[253] T. A. Le and J. W. Sander. Integral circulant Ramanujan graphs of prime power order.Electron. J. Combin., 20(3):#P35, 12 pages, 2013. (Cited on pages 67 and 68.) · Zbl 1295.05144
[254] K. H. Leung and S. L. Ma. Partial difference triples.J. Algebraic Combin., 2(4):397- 409, 1993. (Cited on pages 115 and 116.) · Zbl 0788.05094
[255] C. H. Li. On isomorphisms of finite Cayley graphs – a survey.Discrete Math., 256(1-2):301-334, 2002. (Cited on page 42.) · Zbl 1018.05044
[256] F. Li. Circulant digraphs integral over number fields.Discrete Math., 313(6):821- 823, 2013. (Cited on page 40.) · Zbl 1260.05068
[257] F. Li. A method to determine algebraically integral Cayley digraphs on finite abelian group.Contrib. Discrete Math., 15(2):148-152, 2020. (Cited on page 40.) · Zbl 1477.05084
[258] S. Li and L. A. Vinh. On the spectrum of unitary Euclidean graphs.Ars Combin., 110:275-287, 2013. (Cited on pages 22 and 23.) · Zbl 1313.05186
[259] W.-C. W. Li. A survey of Ramanujan graphs. InArithmetic, geometry and coding theory (Luminy, 1993), pages 127-143. de Gruyter, Berlin, 1996. (Cited on page 7.)
[260] W.-C. W. Li and Y. Meemark. Ramanujan graphs on cosets of PGL2(Fq).Finite Fields Appl., 11(3):511-543, 2005. (Cited on page 78.) · Zbl 1075.05053
[261] X. Li, Y. Shi, and I. Gutman.Graph Energy. Springer, New York, 2012. (Cited on page 51.) · Zbl 1262.05100
[262] Y. Li. Private communication. 2021. (Cited on page 131.)
[263] Y. Li, X. Liu, S. Zhang, and S. Zhou. The 2nd power of generalized Hamming graphs. In preparation. (Cited on page 25.)
[264] Y. Li, X. Liu, S. Zhang, and S. Zhou. Perfect state transfer in NEPS of complete graphs.Discrete Appl. Math., 289:98-114, 2021. (Cited on page 98.) · Zbl 1454.81095
[265] Y. Li, B. Xia, and S. Zhou. Aldous’ spectral gap property for normal Cayley graphs on symmetric groups.arXiv:2203.06789, 2022. (Cited on pages 84, 85, and 137.)
[266] T. K. Lim and C. E. Praeger. On generalized Paley graphs and their automorphism groups.Michigan Math. J., 58(1):293-308, 2009. (Cited on page 50.) · Zbl 1284.05175
[267] B. Litow and B. Mans. A note on the ´Ad´am conjecture for double loops.Inform. Process. Lett., 66(3):149-153, 1998. (Cited on page 43.) · Zbl 1078.68676
[268] X. Liu. Energies of unitary one-matching bi-Cayley graphs over finite commutative rings.Discrete Appl. Math., 259:170-179, 2019. (Cited on page 113.) · Zbl 1407.05121
[269] X. Liu and B. Li. Distance powers of unitary Cayley graphs.Appl. Math. Comput., 289:272-280, 2016. (Cited on pages 20, 56, 57, and 68.) · Zbl 1410.05135
[270] X. Liu and C. Yan. Unitary homogeneous bi-Cayley graphs over finite commutative rings.J. Algebra Appl., 19(9):2050173, 18, 2020. (Cited on page 113.) · Zbl 1451.05141
[271] X. Liu and S. Zhou. Spectral properties of Cayley graphs over dihedral groups. In preparation. (Cited on pages 32 and 69.)
[272] X. Liu and S. Zhou. Spectral properties of unitary Cayley graphs of finite commutative rings.Electron. J. Combin., 19(4):#P13, 19 pages, 2012. (Cited on pages 46, 61, 62, 67, 70, and 71.) · Zbl 1266.05082
[273] X. Liu and S. Zhou. Quadratic unitary Cayley graphs of finite commutative rings. Linear Algebra Appl., 479:73-90, 2015. (Cited on pages 47, 48, 49, 62, 63, and 71.) · Zbl 1315.05074
[274] P.-S. Loh and L. J. Schulman. Improved expansion of random Cayley graphs.Discrete Math. Theor. Comput. Sci., 6(2):523-528, 2004. (Cited on page 126.) · Zbl 1066.68097
[275] L. Lov´asz.Spectra of graphs with transitive groups.Period. Math. Hungar., 6(2):191-195, 1975. (Cited on pages 11, 12, 13, 14, 23, and 24.) · Zbl 0395.05057
[276] S. Lovett, C. Moore, and A. Russell. Group representations that resist random sampling.Random Structures Algorithms, 47(3):605-614, 2015. (Cited on page 126.) · Zbl 1325.05151
[277] L. Lu, Q. Huang, and X. Huang. Integral Cayley graphs over dihedral groups.J. Algebraic Combin., 47(4):585-601, 2018. (Cited on pages 32 and 33.) · Zbl 1394.05047
[278] M. Lu, D. Wan, L.-P. Wang, and X.-D. Zhang. Algebraic Cayley graphs over finite fields.Finite Fields Appl., 28:43-56, 2014. (Cited on page 124.) · Zbl 1296.05169
[279] A. Lubotzky. Cayley graphs: eigenvalues, expanders and random walks. InSurveys in Combinatorics, 1995 (Stirling), volume 218 ofLondon Math. Soc. Lecture Note Ser., pages 155-189. Cambridge Univ. Press, Cambridge, 1995. (Cited on pages 4 and 7.) · Zbl 0835.05033
[280] A. Lubotzky. Expander graphs in pure and applied mathematics.Bull. Amer. Math. Soc. (N.S.), 49(1):113-162, 2012. (Cited on pages 7 and 66.) · Zbl 1232.05194
[281] A. Lubotzky, R. Phillips, and P. Sarnak.Ramanujan graphs.Combinatorica, 8(3):261-277, 1988. (Cited on page 7.) · Zbl 0661.05035
[282] A. Lubotzky, B. Samuels, and U. Vishne. Isospectral Cayley graphs of some finite simple groups.Duke Math. J., 135(2):381-393, 2006. (Cited on pages 41 and 42.) · Zbl 1110.05044
[283] G. Luo, X. Cao, D. Wang, and X. Wu. Perfect quantum state transfer on Cayley graphs over semi-dihedral groups.Linear Multilinear Algebra, 0(0):1-17, 2021. (Cited on pages 33 and 102.)
[284] G. Luo, X. Cao, G. Xu, and Y. Cheng. Cayley graphs of dihedral groups having perfect edge state transfer.Linear Multilinear Algebra, 0(0):1-16, 2021. (Cited on page 133.)
[285] D. S. Lyubshin and S. V. Savchenko. Cayley digraphs with normal adjacency matrices.Discrete Math., 309(13):4343-4348, 2009. (Cited on page 122.) · Zbl 1179.05053
[286] S. L. Ma. Partial difference sets.Discrete Math., 52(1):75-89, 1984. (Cited on page 107.) · Zbl 0548.05012
[287] S. L. Ma. A survey of partial difference sets.Des. Codes Cryptogr., 4(3):221-261, 1994. (Cited on pages 7, 106, and 117.) · Zbl 0798.05008
[288] X. Ma and K. Wang. Integral Cayley sum graphs and groups.Discuss. Math. Graph Theory, 36(4):797-803, 2016. (Cited on page 118.) · Zbl 1350.05060
[289] X. Ma and K. Wang. On finite groups all of whose cubic Cayley graphs are integral. J. Algebra Appl., 15(6):1650105, 10 pages, 2016. (Cited on page 37.) · Zbl 1335.05084
[290] F. J. MacWilliams and H. B. Mann. On thep-rank of the design matrix of a difference set.Information and Control, 12:474-488, 1968. (Cited on page 122.) · Zbl 0169.32104
[291] A. Malniˇc, D. Maruˇsiˇc, and P. ˇSparl. On strongly regular bicirculants.European J. Combin., 28(3):891-900, 2007. (Cited on page 116.) · Zbl 1112.05052
[292] B. Mans, F. Pappalardi, and I. Shparlinski. On the spectral ´Ad´am property for circulant graphs.Discrete Math., 254(1-3):309-329, 2002. (Cited on pages 42 and 43.) · Zbl 1035.05059
[293] G. A. Margulis. Explicit constructions of expanders.Problemy Peredaˇci Informacii, 9(4):71-80, 1973. (Cited on page 7.) · Zbl 0312.22011
[294] W. J. Martin.A Graph-theoretic Approach to Bounds for Error-correcting Codes. 2009. CIMPA-UNESCO-PHILIPPINES Summer School on Semidefinite Programming in Algebraic Combinatorics. (Cited on page 90.)
[295] L. Mart´ınez. Strongly regularm-Cayley circulant graphs and digraphs.Ars Math. Contemp., 8(1):195-213, 2015. (Cited on page 117.) · Zbl 1317.05194
[296] D. Maruˇsiˇc. Strongly regular bicirculants and tricirculants.Ars Combin., 25(C):11- 15, 1988. (Cited on pages 114 and 115.) · Zbl 0709.05039
[297] D. Maruˇsiˇc. Strong regularity and circulant graphs.Discrete Math., 78(1-2):119- 125, 1989. (Cited on page 107.) · Zbl 0689.05026
[298] A. Medrano, P. Myers, H. M. Stark, and A. Terras. Finite analogues of Euclidean space.J. Comput. Appl. Math., 68(1-2):221-238, 1996. (Cited on pages 72 and 73.) · Zbl 0874.05030
[299] A. Medrano, P. Myers, H. M. Stark, and A. Terras. Finite Euclidean graphs over rings.Proc. Amer. Math. Soc., 126(3):701-710, 1998. (Cited on pages 73 and 74.) · Zbl 0957.05053
[300] Y. Meemark and S. Sriwongsa. Perfect state transfer in unitary Cayley graphs over local rings.Trans. Comb., 3(4):43-54, 2014. (Cited on page 100.) · Zbl 1474.05257
[301] Y. Meemark and B. Suntornpoch. Balanced unitary Cayley sigraphs over finite commutative rings.J. Algebra Appl., 13(5):1350152, 12, 2014. (Cited on page 132.) · Zbl 1291.05086
[302] J. Meng. Non-isomorphic cospectral Cayley digraphs.Graph Theory Notes N. Y., 35:51-53, 1998. New York Graph Theory Day, 35 (1998). (Cited on page 123.)
[303] ˇS. Miklaviˇc and P. Potoˇcnik. Distance-regular circulants.European J. Combin., 24(7):777-784, 2003. (Cited on page 107.) · Zbl 1026.05107
[304] ˇS. Miklaviˇc and P. Potoˇcnik. Distance-regular Cayley graphs on dihedral groups.J. Combin. Theory Ser. B, 97(1):14-33, 2007. (Cited on page 108.) · Zbl 1107.05102
[305] ˇS. Miklaviˇc and P. ˇSparl. On distance-regular Cayley graphs on abelian groups.J. Combin. Theory Ser. B, 108:102-122, 2014. (Cited on page 107.) · Zbl 1297.05112
[306] M. Minchenko and I. M Wanless. Quartic integral Cayley graphs.Ars Math. Contemp., 8(2):381-408, 2015. (Cited on page 36.) · Zbl 1328.05090
[307] M. Minei and H. Skogman. Block diagonalization method for the covering graph. Ars Combin., 92:321-352, 2009. (Cited on page 132.) · Zbl 1224.05315
[308] B. Mohar. Isoperimetric numbers of graphs.J. Combin. Theory Ser. B, 47(3):274- 291, 1989. (Cited on page 66.) · Zbl 0719.05042
[309] B. Mohar. Laplace eigenvalues of graphs—a survey.Discrete Math., 109(1-3):171- 183, 1992. (Cited on page 7.) · Zbl 0783.05073
[310] B. Mohar and W. Woess. A survey on spectra of infinite graphs.Bull. London Math. Soc., 21(3):209-234, 1989. (Cited on page 7.) · Zbl 0645.05048
[311] H. Mokhtar and S. Zhou. Recursive cubes of rings as models for interconnection networks.Discrete Appl. Math., 217(part 3):639-662, 2017. (Cited on page 134.) · Zbl 1358.05265
[312] M. Mollahajiaghaei. The eigenvalues and energy of integral circulant graphs.Trans. Comb., 1(3):47-56, 2012. (Cited on page 53.) · Zbl 1272.05115
[313] K. Momihara. Construction of strongly regular Cayley graphs based on three-valued Gauss periods.European J. Combin., 70:232-250, 2018. (Cited on page 108.) · Zbl 1384.05183
[314] G. E. Moorhouse, S. Sun, and J. Williford. The eigenvalues of the graphsD(4, q). J. Combin. Theory Ser. B, 125:1-20, 2017. (Cited on page 92.) · Zbl 1362.05061
[315] C. J. Moreno. Harmonic analysis on finite rings and applications. InAlgebra and its Applications (Athens, OH, 1999), volume 259 ofContemp. Math., pages 409-430. Amer. Math. Soc., Providence, RI, 2000. (Cited on page 12.)
[316] M. R. Murty. Ramanujan graphs.J. Ramanujan Math. Soc., 18(1):33-52, 2003. (Cited on pages 7 and 66.) · Zbl 1038.05038
[317] M. Muzychuk. A solution of the isomorphism problem for circulant graphs.Proc. London Math. Soc. (3), 88(1):1-41, 2004. (Cited on page 42.) · Zbl 1045.05052
[318] W. Narkiewicz. On a class of arithmetical convolutions.Colloq. Math., 10:81-94, 1963. (Cited on page 54.) · Zbl 0114.26502
[319] B. Nica. Unimodular graphs and Eisenstein sums.J. Algebraic Combin., 45(2):423- 454, 2017. (Cited on page 78.) · Zbl 1358.05179
[320] A. Nilli. Tight estimates for eigenvalues of regular graphs.Electron. J. Combin., 11(1):#N9, 4 pages, 2004. (Cited on page 89.) · Zbl 1053.05082
[321] I. Pak.Random Cayley graphs withO(log|G|) generators are expanders.In Algorithms—ESA ’99 (Prague), volume 1643 ofLecture Notes in Comput. Sci., pages 521-526. Springer, Berlin, 1999. (Cited on page 126.) · Zbl 0942.05061
[322] H. Pal. More circulant graphs exhibiting pretty good state transfer.Discrete Math., 341(4):889-895, 2018. (Cited on page 104.) · Zbl 1380.05124
[323] H. Pal and B. Bhattacharjya. Perfect state transfer on Cayley graphs over finite abelian groups.arXiv:1601.07647, 2016. (Cited on pages 94 and 99.) · Zbl 1347.05092
[324] H. Pal and B. Bhattacharjya. Perfect state transfer on gcd-graphs.Linear Multilinear Algebra, 65(11):2245-2256, 2017. (Cited on page 99.) · Zbl 1387.05070
[325] H. Pal and B. Bhattacharjya. Pretty good state transfer on circulant graphs.Electron. J. Combin., 24(2):#P2.23, 13 pages, 2017. (Cited on page 104.) · Zbl 1364.05027
[326] N. Palanivel and A. V. Chithra. Energy and Laplacian energy of unitary addition Cayley graphs.Filomat, 33(11):3599-3613, 2019. (Cited on page 120.) · Zbl 1499.05386
[327] O. Parzanchevski and D. Puder. Aldous’s spectral gap conjecture for normal sets. Trans. Amer. Math. Soc., 373(10):7067-7086, 2020. (Cited on pages 83 and 84.) · Zbl 1480.20039
[328] M. Petersdorf and H. Sachs. Spektrum und Automorphismengruppe eines Graphen. Combinatorial Theory and its Applications, III (Proc. Colloq., Balatonf¨ured, 1969), pages 891-907, 1970. (Cited on pages 14 and 16.)
[329] M. D. Petkovi´c and M. Baˇsi´c. Further results on the perfect state transfer in integral circulant graphs.Comput. Math. Appl., 61(2):300-312, 2011. (Cited on page 95.) · Zbl 1211.05076
[330] R. A. Podest´a and D. E. Videla. Spectral properties of generalized Paley graphs and their associated irreducible cyclic codes.arXiv:1908.08097, 2020. (Cited on pages 50, 51, 63, and 72.)
[331] R. A. Podest´a and D. E. Videla. Integral equienergetic non-isospectral unitary Cayley graphs.Linear Algebra Appl., 612:42-74, 2021. (Cited on pages 63, 119, 120, and 121.) · Zbl 1460.05086
[332] S. C. Poulos.Graph Theoretic and Spectral Properties of Finite Upper Half-Planes. ProQuest LLC, Ann Arbor, MI, 1991. Thesis (Ph.D.)-University of California, San Diego. (Cited on page 76.)
[333] Y. Qin, W. Xiao, and ˇS. Miklaviˇc. Connected graphs as subgraphs of Cayley graphs: conditions on Hamiltonicity.Discrete Math., 309(17):5426-5431, 2009. (Cited on page 129.) · Zbl 1198.05096
[334] H. N. Ramaswamy and C. R. Veena. On the energy of unitary Cayley graphs. Electron. J. Combin., 16(1):#N24, 8 pages, 2009. (Cited on page 52.) · Zbl 1185.05099
[335] A. Rasri and Y. Meemark. Algebraic Cayley graphs over finite local rings.Finite Fields Appl., 48:227-240, 2017. (Cited on page 125.) · Zbl 1390.13072
[336] J. Rattanakangwanwong and Y. Meemark. Unitary Cayley graphs of matrix rings over finite commutative rings.Finite Fields Appl., 65:101689, 16, 2020. (Cited on pages 47, 62, 71, and 109.) · Zbl 1442.05088
[337] A. A. Razborov. The gap between the chromatic number of a graph and the rank of its adjacency matrix is superlinear.Discrete Math., 108(1-3):393-396, 1992. (Cited on page 23.) · Zbl 0776.05073
[338] P. Renteln. On the spectrum of the derangement graph.Electron. J. Combin., 14(1):#R82, 17 pages, 2007. (Cited on pages 28, 29, and 85.) · Zbl 1183.05047
[339] P. Renteln. The distance spectra of Cayley graphs of Coxeter groups.Discrete Math., 311(8-9):738-755, 2011. (Cited on pages 27 and 128.) · Zbl 1233.05132
[340] C. Reyes-Bustos. Cayley-type graphs for group-subgroup pairs.Linear Algebra Appl., 488:320-349, 2016. (Cited on page 121.) · Zbl 1326.05063
[341] C. Riess, V. Strehl, and R. Wanka. The spectral relation between the cube-connected cycles and the shuffle-exchange network.ARCS 2012, pages 1-6, 2012. (Cited on page 134.)
[342] H. Sachs and M. Stiebitz. Simple eigenvalues of transitive graphs.Studia Sci. Math. Hungar., 17(1-4):77-90, 1982. (Cited on pages 14, 15, 16, and 134.) · Zbl 0514.05042
[343] H. Sachs and M. Stiebitz. Automorphism group and spectrum of a graph. InStudies in Pure Mathematics, pages 587-604. Birkh¨auser, Basel, 1983. (Cited on page 15.) · Zbl 0524.05044
[344] B. E. Sagan.The Symmetric Group, volume 203 ofGraduate Texts in Mathematics. Springer-Verlag, New York, second edition, 2001. Representations, combinatorial algorithms, and symmetric functions. (Cited on page 10.) · Zbl 0964.05070
[345] J. W. Sander. Integral circulant Ramanujan graphs via multiplicativity and ultrafriable integers.Linear Algebra Appl., 477:21-41, 2015. (Cited on pages 67 and 68.) · Zbl 1310.05118
[346] J. W. Sander and T. Sander. The energy of integral circulant graphs with prime power order.Appl. Anal. Discrete Math., 5(1):22-36, 2011. (Cited on pages 55, 57, and 58.) · Zbl 1299.05230
[347] J. W. Sander and T. Sander. Integral circulant graphs of prime power order with maximal energy.Linear Algebra Appl., 435(12):3212-3232, 2011. (Cited on page 58.) · Zbl 1226.05164
[348] J. W. Sander and T. Sander. The maximal energy of classes of integral circulant graphs.Discrete Appl. Math., 160(13-14):2015-2029, 2012. (Cited on page 58.) · Zbl 1246.05099
[349] J. W. Sander and T. Sander. The exact maximal energy of integral circulant graphs with prime power order.Contrib. Discrete Math., 8(2):19-40, 2013. (Cited on page 58.) · Zbl 1317.05114
[350] J. W. Sander and T. Sander. On So’s conjecture for integral circulant graphs.Appl. Anal. Discrete Math., 9(1):59-72, 2015. (Cited on pages 43 and 44.) · Zbl 1464.05185
[351] T. Sander. Sudoku graphs are integral.Electron. J. Combin., 16(1):#N25, 7 pages, 2009. (Cited on page 25.) · Zbl 1185.05100
[352] T. Sander. Eigenspaces of Hamming graphs and unitary Cayley graphs.Ars Math. Contemp., 3(1):13-19, 2010. (Cited on page 25.) · Zbl 1231.05172
[353] S. Satake.A note on the relation between two properties of random graphs. arXiv:1901.10734, 2019. (Cited on page 130.)
[354] S. Satake. On expander Cayley graphs from Galois rings.arXiv:1902.03423, 2019. (Cited on pages 71 and 72.)
[355] S. V. Savchenko. On the change of the Jordan form under the transition from the adjacency matrix of a vertex-transitive digraph to its principal submatrix of co-order one.Linear Algebra Appl., 394:225-235, 2005. (Cited on page 130.) · Zbl 1066.15011
[356] N. Saxena, S. Severini, and I. E. Shparlinski. Parameters of integral circulant graphs and periodic quantum dynamics.International Journal of Quantum Information, 5(03):417-430, 2007. (Cited on page 95.) · Zbl 1119.81042
[357] J. J. Seidel. Strongly regular graphs with (−1,1,0) adjacency matrix having eigenvalue 3.Linear Algebra Appl., 1:281-298, 1968. (Cited on pages 109 and 110.) · Zbl 0159.25403
[358] J.-P. Serre.Linear Representations of Finite Groups. Springer-Verlag, New YorkHeidelberg, 1977. (Cited on page 10.)
[359] I. Shparlinski. On the energy of some circulant graphs.Linear Algebra Appl., 414(1):378-382, 2006. (Cited on page 60.) · Zbl 1083.05029
[360] J. Siemons and A. Zalesski. Remarks on singular Cayley graphs and vanishing elements of simple groups.J. Algebraic Combin., 50(4):379-401, 2019. (Cited on page 130.) · Zbl 1429.05093
[361] P. Sin and J. Sorci. Continuous-time quantum walks on Cayley graphs of extraspecial groups.arXiv:2011.07566, 2020. (Cited on page 103.)
[362] J. A. Sjogren. Connectivity and spectrum in a graph with a regular automorphism group of odd order.Internat. J. Algebra Comput., 4(4):529-560, 1994. (Cited on page 113.) · Zbl 0818.05036
[363] W. So. Integral circulant graphs.Discrete Math., 306(1):153-158, 2005. (Cited on pages 17, 32, 43, 134, and 136.) · Zbl 1084.05045
[364] B. Steinberg.Representation Theory of Finite Groups. Universitext. Springer, New York, 2012. (Cited on page 10.) · Zbl 1243.20001
[365] D. Stevanovi´c. Applications of graph spectra in quantum physics.Zb. Rad. (Beogr.), 14(22)(Selected topics on applications of graph spectra):85-111, 2011. (Cited on pages 4, 93, 95, and 96.) · Zbl 1289.05316
[366] B. Suntornpoch and Y. Meemark. Cayley graphs over a finite chain ring and GCDgraphs.Bull. Aust. Math. Soc., 93(3):353-363, 2016. (Cited on pages 49 and 64.) · Zbl 1339.05242
[367] Y. Tan, K. Feng, and X. Cao. Perfect state transfer on abelian Cayley graphs. Linear Algebra Appl., 563:331-352, 2019. (Cited on pages 94, 95, 96, 97, and 133.) · Zbl 1403.05066
[368] L. Tang, T. Cheng, W. Liu, and L. Feng. A large family of cospectral Cayley graphs over dicyclic groups.Discrete Math., 344(12):Paper No. 112618, 11, 2021. (Cited on pages 41 and 44.) · Zbl 1473.05129
[369] T. Tao.Expansion in Finite Simple Groups of Lie Type, volume 164 ofGraduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2015. (Cited on page 7.) · Zbl 1336.20015
[370] Y. Teranishi. Eigenvalues and automorphisms of a graph.Linear Multilinear Algebra, 57(6):577-585, 2009. (Cited on page 16.) · Zbl 1167.05040
[371] A. Terras. Eigenvalue problems related to finite analogues of upper half planes. InForty More Years of Ramifications: Spectral Asymptotics and its Applications, volume 1 ofDiscourses Math. Appl., pages 237-263. Texas A & M Univ., College Station, TX, 1991. (Cited on page 76.) · Zbl 0782.00027
[372] A. Terras. Survey of spectra of Laplacians on finite symmetric spaces.Experiment. Math., 5(1):15-32, 1996. (Cited on page 76.) · Zbl 0871.05044
[373] A. Terras.Fourier Analysis on Finite Groups and Applications, volume 43 ofLondon Mathematical Society Student Texts. Cambridge University Press, Cambridge, 1999. (Cited on pages 73, 75, and 76.) · Zbl 0928.43001
[374] The GAP Group. GAP-Groups, Algorithms, and Programming - A System for Computational Discrete Algebra, Version 4.7.8. available online athttp://gap-system. org, 2015. (Cited on page 26.)
[375] I. Thongsomnuk and Y. Meemark. Perfect state transfer in unitary Cayley graphs and gcd-graphs.Linear Multilinear Algebra, 67(1):39-50, 2019. (Cited on pages 99, 100, and 101.) · Zbl 1429.05094
[376] G.-X. Tian. On the skew energy of orientations of hypercubes.Linear Algebra Appl., 435(9):2140-2149, 2011. (Cited on page 65.) · Zbl 1221.05243
[377] N. Trinajsti´c.Chemical Graph Theory. Mathematical Chemistry Series. CRC Press, Boca Raton, FL, second edition, 1992. (Cited on page 4.)
[378] J. Turner. Point-symmetric graphs with a prime number of points.J. Combinatorial Theory, 3:136-145, 1967. (Cited on page 42.) · Zbl 0161.20803
[379] V. A. Ustimenko. On a group theoretical construction of expanding graphs.Algebra Discrete Math., (3):102-109, 2003. (Cited on page 92.) · Zbl 1061.05061
[380] L. Vinet and A. Zhedanov. Almost perfect state transfer in quantum spin chains. Phys. Rev. A, 86:052319, Nov 2012. (Cited on page 103.) · Zbl 1251.81021
[381] L. A. Vinh. Finite Euclidean graphs overZ2rare non-Ramanujan.Australas. J. Combin., 43:295-305, 2009. (Cited on pages 73 and 74.) · Zbl 1184.05080
[382] L. A. Vinh. Graphs generated by Sidon sets and algebraic equations over finite fields.J. Combin. Theory Ser. B, 103(6):651-657, 2013. (Cited on page 119.)
[383] D. Wang and X. Cao. Pretty good state transfer on Cayley graphs over semi-dihedral groups.Linear Multilinear Algebra, 0(0):1-16, 2021. (Cited on page 105.) · Zbl 1429.05121
[384] L. Wang. A survey of results on integral trees and integral graphs. Memorandum 1763, Department of Applied Mathematics, University of Twente, Enschede, 2005. (Cited on page 17.)
[385] Y. Xu and J. Meng. Gaussian integral circulant digraphs.Discrete Math., 311(1):45- 50, 2011. (Cited on pages 39 and 40.) · Zbl 1225.05121
[386] Y. Yamasaki. Ramanujan Cayley graphs of the generalized quaternion groups and the Hardy-Littlewood conjecture. InMathematical Modelling for Next-generation Cryptography, volume 29 ofMath. Ind. (Tokyo), pages 159-175. Springer, Singapore, 2018. (Cited on page 80.)
[387] H. Yan and C. Liu. A note on the spectrum of linearized Wenger graphs.Discrete Math., 340(5):1050-1053, 2017. (Cited on page 92.) · Zbl 1357.05095
[388] S. Zheng, X. Liu, and S. Zhang. Perfect state transfer in NEPS of some graphs. Linear Multilinear Algebra, 68(8):1518-1533, 2020. (Cited on page 97.) · Zbl 1448.05136
[389] H. Q. Zhou and Y. Z. Xu. Some constructions of hyperenergetic integral circulant graphs.J. Zhejiang Univ. Sci. Ed., 42(2):127-132, 2015. (Cited on page 57.)
[390] J. Zhou, C. Bu, and J. Shen. Some results for the periodicity and perfect state transfer.Electron. J. Combin., 18(1):#P184, 7 pages, 2011. (Cited on page 93.) · Zbl 1229.05205
[391] S. Zhou.A class of arc-transitive Cayley graphs as models for interconnection networks.SIAM J. Discrete Math., 23(2):694-714, 2009. (Cited on pages 89 and 90.) · Zbl 1191.05056
[392] P.-H. Zieschang. Cayley graphs of finite groups.J. Algebra, 118(2):447-454, 1988. (Cited on page 13.) · Zbl 0665.20018
[393] H. Zou and J. X. Meng. Some algebraic properties of bi-Cayley graphs.Acta Math. Sinica (Chin. Ser.), 50(5):1075-1080, 2007. (Cited on page 113.) · Zbl 1157.05315
[394] A. ˙Zuk. Analysis and geometry on groups. InDiscrete Geometric Analysis, volume 34 ofMSJ Mem., pages 113-157. Math. Soc. Japan, Tokyo, 2016. (Cited on page 7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.