×

On the properties of conservative finite volume scheme for the two-phase Stefan problem. (English. Russian original) Zbl 1505.76063

Differ. Equ. 58, No. 7, 918-936 (2022); translation from Differ. Uravn. 58, No. 7, 930-946 (2022).
Summary: We study the properties of a finite volume scheme for the two-phase Stefan problem. The numerical algorithm based on the explicit interface tracking is considered. The mathematical model takes into account the convective motion in the liquid and heat transfer in both phases. A fixed melting temperature and internal energy balance condition are given at the phase boundary. The moving interface position is determined using the front-fixing method. It is shown that the proposed computational scheme is conservative and inherits the generic properties of the original differential problem.

MSC:

76M12 Finite volume methods applied to problems in fluid mechanics
76T99 Multiphase and multicomponent flows
80A22 Stefan problems, phase changes, etc.
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Samarskii, A. A., Vvedenie v teoriyu raznostnykh skhem (Introduction to the Theory of Difference Schemes) (1971), Moscow: Nauka, Moscow
[2] Patankar, S., Numerical Heat Transfer and Fluid Flow (1981), Philadelphia: Taylor and Francis, Philadelphia · Zbl 0521.76003
[3] Samarskii, A. A.; Popov, Yu. P., Raznostnye metody resheniya zadach gazovoi dinamiki (Difference Methods for Solving Problems of Gas Dynamics) (1971), Moscow: Nauka, Moscow
[4] Tikhonov, A. N.; Samarskii, A. A., On difference schemes for equations with discontinuous coefficients, Dokl. Akad. Nauk SSSR, 108, 3, 393-396 (1956) · Zbl 0070.12605
[5] Tikhonov, A. N.; Samarskii, A. A., On the convergence of difference schemes in the class of discontinuous coefficients, Dokl. Akad. Nauk SSSR, 124, 3, 529-532 (1959) · Zbl 0090.34201
[6] Tikhonov, A. N.; Samarskii, A. A., On homogeneous difference schemes, Zh. Vychisl. Mat. Mat. Fiz., 1, 1, 5-63 (1961) · Zbl 0131.34102
[7] Tikhonov, A. N.; Samarskii, A. A., On homogeneous difference schemes, Dokl. Akad. Nauk SSSR, 122, 4, 562-566 (1958) · Zbl 0090.34102
[8] Mazhorova, O. S.; Popov, Yu. P.; Shcheritsa, O. V., Conservative scheme for the thermodiffusion Stefan problem, Differ. Equations, 49, 7, 897-905 (2013) · Zbl 1307.80005 · doi:10.1134/S0012266113070094
[9] Gusev, A. O.; Shcheritsa, O. V.; Mazhorova, O. S., Conservative finite volume strategy for investigation of solution crystal growth techniques, Comput. & Fluids, 202, 104501 (2020) · Zbl 1519.76173 · doi:10.1016/j.compfluid.2020.104501
[10] Landau, H. G., Heat conduction in a melting solid, J. Appl. Math., 8, 81-94 (1950) · Zbl 0036.13902
[11] Gusev, A. O.; Shcheritsa, O. V.; Mazhorova, O. S., Two equivalent finite volume schemes for Stefan problem on boundary-fitted grids: front-tracking and front-fixing techniques, Differ. Equations, 57, 7, 876-890 (2021) · Zbl 1496.65136 · doi:10.1134/S0012266121070053
[12] Fletcher, C. A.J., Computational Methods in Fluid Dynamics 2 (1988), Berlin-Heidelberg: Springer-Verlag, Berlin-Heidelberg
[13] Steger, J., Implicit finite-difference simulation of flow about arbitrary two-dimensional geometries, Am. Inst. Aeronaut. Astronaut. J., 16, 7, 679-686 (1978) · Zbl 0383.76013 · doi:10.2514/3.7377
[14] Arakawa, A., Computational design for long-term numerical integration of the equation of fluid motion: two dimensional incompressible flow, J. Comput. Phys., 1, 119-143 (1966) · Zbl 0147.44202 · doi:10.1016/0021-9991(66)90015-5
[15] Samarskii, A. A., Teoriya raznostnykh skhem (Theory of Difference Schemes) (1989), Moscow: Nauka, Moscow · Zbl 0874.65077
[16] Lan, C. W., Newton’s method for solving heat transfer, fluid flow and interface shapes in a floating molten zone, Int. J. Numer. Methods Fluids, 19, 41-65 (1994) · Zbl 0825.76620 · doi:10.1002/fld.1650190105
[17] Thom, A., The flow past circular cylinders at low speeds, Proc. R. Soc. London. Ser. A, 141, 4, 651-669 (1933) · JFM 59.0765.01
[18] Phillips, N., An example of non-linear computational instability, The Atmosphere and the Sea in Motion, New York: Rockefeller Inst. Press, 1959, pp. 501-504.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.