On connection between variationality of a six-order ordinary differential equation and Hamilton-Ostrogradskii equations. (English) Zbl 1506.47085

Summary: In the paper, we investigate the representability of a six-order ordinary differential equation in the form of Hamilton-Ostrogradskii equations. For this purpose, potentiality conditions are obtained and the corresponding Hamilton-Ostrogradskii action is constructed.


47G40 Potential operators
70H05 Hamilton’s equations
34A55 Inverse problems involving ordinary differential equations
Full Text: DOI


[1] Budochkina, S. A., On a representation of an operator equation with first time derivative in the form of a \(B_u\), Differ. Equat., 49, 176-186 (2013) · Zbl 1267.35227
[2] Budochkina, S. A.; Dekhanova, E. S., On the potentiality of a class of operators relative to local bilinear forms, Ural Math. J., 7, 26-37 (2021) · Zbl 1477.49054
[3] Budochkina, S. A.; Savchin, V. M., On \(B_u\), Dokl. Math., 84, 525-526 (2011) · Zbl 1318.70012
[4] Budochkina, S. A.; Savchin, V. M., On direct variational formulations for second order evolutionary equations, Euras. Math. J., 3, 23-34 (2012) · Zbl 1280.47054
[5] Budochkina, S. A.; Savchin, V. M., An operator equation with the second time derivative and Hamiltonian-admissible equations, Dokl. Math., 94, 487-489 (2016) · Zbl 06688859
[6] Filippov, V. M., Variational Principles for Non-Potential Operators (1985), Moscow: UDN, Moscow · Zbl 0699.35011
[7] Filippov, V. M.; Savchin, V. M.; Shorokhov, S. G., Variational principles for nonpotential operators, J. Math. Sci., 68, 275-398 (1994) · Zbl 0835.58012
[8] Galiullin, A. S., Helmholtz Systems (1995), Moscow: RUDN, Moscow · Zbl 1051.70019
[9] Galiullin, A. S., Analytical Dynamics (1998), Moscow: RUDN, Moscow · Zbl 1081.70500
[10] Kobelev, V., Non-Leibniz Hamiltonian and Lagrangian formalisms for certain class of dissipative systems, Comput. Math. Math. Phys., 1, e1035 (2019)
[11] Kozlov, V. V., Integrability and non-integrability in Hamiltonian mechanics, Russ. Math. Surv., 38, 1-76 (1983) · Zbl 0525.70023
[12] Ostrogradskii, M. V., Complete Collection of Scientific Works (1961), Kiev: Akad. Nauk USSR, Kiev
[13] Popov, A. M., Potentiality conditions for differential-difference equations, Differ. Equat., 34, 423-426 (1998) · Zbl 0947.34067
[14] Popov, A. M., Inverse problem of the calculus of variations for systems of differential-difference equations of second order, Math. Notes, 72, 687-691 (2002) · Zbl 1035.49033
[15] Santilli, R. M., Foundations of Theoretical Mechanics, I: The Inverse Problems in Newtonian Mechanics (1977), Berlin: Springer, Berlin
[16] V. M. Savchin, Ph. D. Dissertation (Lumumba Peoples’ Friendship University, Moscow, 1984).
[17] Savchin, V. M., Mathematical Methods of Mechanics of Infinite-Dimensional Non-Potential Systems (1991), Moscow: UDN, Moscow · Zbl 0925.70160
[18] Savchin, V. M.; Budochkina, S. A., On the structure of a variational equation of evolution type with the second \(t\), Differ. Equat., 39, 127-134 (2003) · Zbl 1229.34096
[19] Savchin, V. M.; Budochkina, S. A., On the existence of a variational principle for an operator equation with the second derivative with respect to ’time’, Math. Notes, 80, 83-90 (2006) · Zbl 1123.47050
[20] Tleubergenov, M. I.; Azhymbaev, D. T., On the solvability of stochastic Helmholtz problem, J. Math. Sci., 253, 297-305 (2021) · Zbl 1467.34056
[21] Tleubergenov, M. I.; Ibraeva, G. T., On inverse problem of closure of differential systems with degenerate diffusion, Euras. Math. J., 10, 93-102 (2019) · Zbl 1463.34067
[22] Tleubergenov, M. I.; Ibraeva, G. T., On the solvability of the main inverse problem for stochastic differential systems, Ukr. Math. J., 71, 157-165 (2019) · Zbl 1433.34031
[23] Tonti, E., On the variational formulation for linear initial value problems, Ann. Mat. Pura Appl., 95, 331-359 (1973) · Zbl 0278.49047
[24] Tonti, E., Variational formulation for every nonlinear problem, Int. J. Eng. Sci., 22, 1343-1371 (1984) · Zbl 0558.49022
[25] Vil’ke, V. G., Analytical and Qualitative Methods of Mechanics of Systems with an Infinite Number of Degrees of Freedom (1986), Moscow: Mosk. Gos. Univ., Moscow · Zbl 0609.70001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.