Loualid, El Mehdi; Berkak, Imane; Daher, Radouan The Watson Fourier transform on a certain class of generalized functions. (English) Zbl 1477.42004 Rend. Circ. Mat. Palermo (2) 70, No. 3, 1425-1440 (2021). MSC: 42A38 42B35 44A35 PDF BibTeX XML Cite \textit{E. M. Loualid} et al., Rend. Circ. Mat. Palermo (2) 70, No. 3, 1425--1440 (2021; Zbl 1477.42004) Full Text: DOI OpenURL
Berkak, Imane; Daher, Radouan The Fourier Chébli-Trimèche transform on Boehmians. (English) Zbl 1467.42008 Anal. Math. Phys. 11, No. 3, Paper No. 105, 20 p. (2021). MSC: 42A38 42B35 44A35 PDF BibTeX XML Cite \textit{I. Berkak} and \textit{R. Daher}, Anal. Math. Phys. 11, No. 3, Paper No. 105, 20 p. (2021; Zbl 1467.42008) Full Text: DOI OpenURL
Al-Omari, Shrideh Khalaf Qasem Estimation of a modified integral associated with a special function kernel of Fox’s \(H\)-function type. (English) Zbl 1467.46042 Commun. Korean Math. Soc. 35, No. 1, 125-136 (2020). MSC: 46F12 46T30 PDF BibTeX XML Cite \textit{S. K. Q. Al-Omari}, Commun. Korean Math. Soc. 35, No. 1, 125--136 (2020; Zbl 1467.46042) Full Text: DOI OpenURL
Berkak, Imane; Loualid, El Mehdi; Daher, Radouan An extension of the Bessel-Wright transform in the class of Boehmians. (English) Zbl 1442.42053 Arab. J. Math. 9, No. 2, 271-280 (2020). MSC: 42B35 44A35 42A38 PDF BibTeX XML Cite \textit{I. Berkak} et al., Arab. J. Math. 9, No. 2, 271--280 (2020; Zbl 1442.42053) Full Text: DOI OpenURL
Al-Omari, Shrideh Khalaf On some variant of a Whittaker integral operator and its representative in a class of square integrable Boehmians. (English) Zbl 1431.42007 Bol. Soc. Parana. Mat. (3) 38, No. 1, 173-183 (2020). MSC: 42A38 42A85 PDF BibTeX XML Cite \textit{S. K. Al-Omari}, Bol. Soc. Parana. Mat. (3) 38, No. 1, 173--183 (2020; Zbl 1431.42007) Full Text: Link OpenURL
Al-Omari, S. K. Q. Estimation of the generalized Bessel-Struve transform in a space of generalized functions. (English) Zbl 1426.46027 Ukr. Math. J. 69, No. 9, 1341-1353 (2018); and Ukr. Mat. Zh. 69, No. 9, 1155-1165 (2017). MSC: 46F12 44A35 PDF BibTeX XML Cite \textit{S. K. Q. Al-Omari}, Ukr. Math. J. 69, No. 9, 1341--1353 (2018; Zbl 1426.46027) Full Text: DOI OpenURL
Al-Omari, Shrideh K. A fractional Fourier integral operator and its extension to classes of function spaces. (English) Zbl 1446.46026 Adv. Difference Equ. 2018, Paper No. 195, 9 p. (2018). MSC: 46F12 42A38 44A15 44A35 44A40 26A33 PDF BibTeX XML Cite \textit{S. K. Al-Omari}, Adv. Difference Equ. 2018, Paper No. 195, 9 p. (2018; Zbl 1446.46026) Full Text: DOI OpenURL
Al-Omari, Shrideh Khalaf On a class of generalized functions for some integral transform enfolding kernels of Meijer \(G\) function type. (English) Zbl 1395.44010 Commun. Korean Math. Soc. 33, No. 2, 515-525 (2018). MSC: 44A15 33C60 PDF BibTeX XML Cite \textit{S. K. Al-Omari}, Commun. Korean Math. Soc. 33, No. 2, 515--525 (2018; Zbl 1395.44010) Full Text: DOI OpenURL
Al-Omari, Shrideh Khalaf Qasem On a class of generalized Meijer-Laplace transforms of Fox function type kernels and their extension to a class of Boehmians. (English) Zbl 1398.46033 Georgian Math. J. 25, No. 1, 1-8 (2018). MSC: 46F12 PDF BibTeX XML Cite \textit{S. K. Q. Al-Omari}, Georgian Math. J. 25, No. 1, 1--8 (2018; Zbl 1398.46033) Full Text: DOI OpenURL
Al-Omari, S. K. Q. A class of Boehmians for a recent generalization of Hankel-Clifford transformation of arbitrary order. (English) Zbl 1365.46034 Afr. Mat. 27, No. 5-6, 877-888 (2016). Reviewer: Deshna Loonker (Jodhpur) MSC: 46F12 44A99 PDF BibTeX XML Cite \textit{S. K. Q. Al-Omari}, Afr. Mat. 27, No. 5--6, 877--888 (2016; Zbl 1365.46034) Full Text: DOI OpenURL
Akila, Lakshmanan; Roopkumar, Rajakumar Multidimensional quaternionic Gabor transforms. (English) Zbl 1350.42015 Adv. Appl. Clifford Algebr. 26, No. 3, 985-1011 (2016). MSC: 42B10 44A15 44A35 PDF BibTeX XML Cite \textit{L. Akila} and \textit{R. Roopkumar}, Adv. Appl. Clifford Algebr. 26, No. 3, 985--1011 (2016; Zbl 1350.42015) Full Text: DOI OpenURL
Akila, L.; Roopkumar, R. Quaternionic Stockwell transform. (English) Zbl 1341.42005 Integral Transforms Spec. Funct. 27, No. 6, 484-504 (2016). MSC: 42A38 44A15 44A35 PDF BibTeX XML Cite \textit{L. Akila} and \textit{R. Roopkumar}, Integral Transforms Spec. Funct. 27, No. 6, 484--504 (2016; Zbl 1341.42005) Full Text: DOI OpenURL
Al-Omari, Shrideh K. Q.; Al-Omari, Jafar F. Some extensions of a certain integral transform to a quotient space of generalized functions. (English) Zbl 1358.46042 Open Math. 13, 816-825 (2015). MSC: 46F12 46F05 PDF BibTeX XML Cite \textit{S. K. Q. Al-Omari} and \textit{J. F. Al-Omari}, Open Math. 13, 816--825 (2015; Zbl 1358.46042) Full Text: DOI OpenURL
Rajendran, Subash Moorthy; Rajakumar, Roopkumar Curvelet transform for Boehmians. (English) Zbl 1298.44006 Arab J. Math. Sci. 20, No. 2, 264-279 (2014). MSC: 44A15 44A35 PDF BibTeX XML Cite \textit{S. M. Rajendran} and \textit{R. Rajakumar}, Arab J. Math. Sci. 20, No. 2, 264--279 (2014; Zbl 1298.44006) Full Text: DOI OpenURL
Al-Omari, S. K. Q.; Kılıçman, Adem On the generalized Krätzel transform and its extension to Bohemian spaces. (English) Zbl 1470.44008 Abstr. Appl. Anal. 2013, Article ID 841585, 7 p. (2013). MSC: 44A40 46F12 PDF BibTeX XML Cite \textit{S. K. Q. Al-Omari} and \textit{A. Kılıçman}, Abstr. Appl. Anal. 2013, Article ID 841585, 7 p. (2013; Zbl 1470.44008) Full Text: DOI OpenURL
Al-Omari, Shrideh; Kılıçman, Adem An estimate of Sumudu transforms for boehmians. (English) Zbl 1380.46021 Adv. Difference Equ. 2013, Paper No. 77, 10 p. (2013). MSC: 46E25 44A15 46F12 PDF BibTeX XML Cite \textit{S. Al-Omari} and \textit{A. Kılıçman}, Adv. Difference Equ. 2013, Paper No. 77, 10 p. (2013; Zbl 1380.46021) Full Text: DOI OpenURL
Al-Omari, Shrideh; Kılıçman, Adem On the generalized Hartley and Hartley-Hilbert transformations. (English) Zbl 1381.44017 Adv. Difference Equ. 2013, Paper No. 222, 14 p. (2013). MSC: 44A35 44A15 46F12 PDF BibTeX XML Cite \textit{S. Al-Omari} and \textit{A. Kılıçman}, Adv. Difference Equ. 2013, Paper No. 222, 14 p. (2013; Zbl 1381.44017) Full Text: DOI OpenURL
Al-Omari, S. K. Q.; Kılıçman, Adem On modified Mellin transform of generalized functions. (English) Zbl 1291.44007 Abstr. Appl. Anal. 2013, Article ID 539240, 6 p. (2013). MSC: 44A15 PDF BibTeX XML Cite \textit{S. K. Q. Al-Omari} and \textit{A. Kılıçman}, Abstr. Appl. Anal. 2013, Article ID 539240, 6 p. (2013; Zbl 1291.44007) Full Text: DOI OpenURL
Al-Omari, S. K. Q.; Kılıçman, A. Unified treatment of the Krätzel transformation for generalized functions. (English) Zbl 1286.46045 Abstr. Appl. Anal. 2013, Article ID 750524, 7 p. (2013). MSC: 46F12 46F05 PDF BibTeX XML Cite \textit{S. K. Q. Al-Omari} and \textit{A. Kılıçman}, Abstr. Appl. Anal. 2013, Article ID 750524, 7 p. (2013; Zbl 1286.46045) Full Text: DOI OpenURL
Al-Omari, S. K. Q.; Kılıçman, A. Some remarks on the extended Hartley-Hilbert and Fourier-Hilbert transforms of Boehmians. (English) Zbl 1275.42004 Abstr. Appl. Anal. 2013, Article ID 348701, 6 p. (2013). MSC: 42A38 46F10 PDF BibTeX XML Cite \textit{S. K. Q. Al-Omari} and \textit{A. Kılıçman}, Abstr. Appl. Anal. 2013, Article ID 348701, 6 p. (2013; Zbl 1275.42004) Full Text: DOI OpenURL
Roopkumar, R. Stockwell transform for Boehmians. (English) Zbl 1274.44005 Integral Transforms Spec. Funct. 24, No. 4, 251-262 (2013). Reviewer: Alexandr L. Brodskij (Severodonetsk) MSC: 44A15 44A35 PDF BibTeX XML Cite \textit{R. Roopkumar}, Integral Transforms Spec. Funct. 24, No. 4, 251--262 (2013; Zbl 1274.44005) Full Text: DOI OpenURL
Al-Omari, S. K. Q.; Kılıçman, A. On the generalized Hartley-Hilbert and Fourier-Hilbert transforms. (English) Zbl 1381.42006 Adv. Difference Equ. 2012, Paper No. 232, 11 p. (2012). MSC: 42A38 44A15 PDF BibTeX XML Cite \textit{S. K. Q. Al-Omari} and \textit{A. Kılıçman}, Adv. Difference Equ. 2012, Paper No. 232, 11 p. (2012; Zbl 1381.42006) Full Text: DOI OpenURL
Arteaga, Cristian; Marrero, Isabel The Hankel transform of tempered Boehmians via the exchange property. (English) Zbl 1302.46029 Appl. Math. Comput. 219, No. 3, 810-818 (2012). Reviewer: Abhishek Singh (Jodhpur) MSC: 46F12 44A35 46F99 PDF BibTeX XML Cite \textit{C. Arteaga} and \textit{I. Marrero}, Appl. Math. Comput. 219, No. 3, 810--818 (2012; Zbl 1302.46029) Full Text: DOI OpenURL
Al-Omari, S. K. Q.; Kılıçman, A. Note on Boehmians for class of optical Fresnel wavelet transforms. (English) Zbl 1266.46030 J. Funct. Spaces Appl. 2012, Article ID 405368, 14 p. (2012). MSC: 46F12 PDF BibTeX XML Cite \textit{S. K. Q. Al-Omari} and \textit{A. Kılıçman}, J. Funct. Spaces Appl. 2012, Article ID 405368, 14 p. (2012; Zbl 1266.46030) Full Text: DOI OpenURL
Atanasiu, Dragu; Mikusiński, Piotr; Nemzer, Dennis An algebraic approach to tempered distributions. (English) Zbl 1230.42013 J. Math. Anal. Appl. 384, No. 2, 307-319 (2011). Reviewer: Julian Musielak (Poznań) MSC: 42B10 46F12 PDF BibTeX XML Cite \textit{D. Atanasiu} et al., J. Math. Anal. Appl. 384, No. 2, 307--319 (2011; Zbl 1230.42013) Full Text: DOI OpenURL
Atanasiu, Dragu Fourier transform and the Boehme property. (English) Zbl 1136.42010 Integral Transforms Spec. Funct. 17, No. 10, 687-693 (2006). Reviewer: Kim Dohan (Seoul) MSC: 42B10 44A40 46F05 46F12 PDF BibTeX XML Cite \textit{D. Atanasiu}, Integral Transforms Spec. Funct. 17, No. 10, 687--693 (2006; Zbl 1136.42010) Full Text: DOI OpenURL
Burzyk, Józef; Mikusiński, Piotr; Nemzer, Dennis Remarks on topological properties of Boehmians. (English) Zbl 1089.46026 Rocky Mt. J. Math. 35, No. 3, 727-740 (2005). Reviewer: V. Karunakaran (Madurai) MSC: 46F05 44A40 PDF BibTeX XML Cite \textit{J. Burzyk} et al., Rocky Mt. J. Math. 35, No. 3, 727--740 (2005; Zbl 1089.46026) Full Text: DOI OpenURL
Karunakaran, V.; Kalpakam, N. V. Boehmians and Fourier transform. (English) Zbl 0980.46027 Integral Transforms Spec. Funct. 9, No. 3, 197-216 (2000). Reviewer: Franz Selig (Bronxville) MSC: 46F12 46F30 44A40 44A35 44A10 PDF BibTeX XML Cite \textit{V. Karunakaran} and \textit{N. V. Kalpakam}, Integral Transforms Spec. Funct. 9, No. 3, 197--216 (2000; Zbl 0980.46027) Full Text: DOI OpenURL
Karunakaran, V.; Kalpakam, N. V. Hilbert transform for Boehmians. (English) Zbl 0982.46030 Integral Transforms Spec. Funct. 9, No. 1, 19-36 (2000). Reviewer: J.M.C.Joshi (Uttaranchal) MSC: 46F12 44A15 44A35 44A40 PDF BibTeX XML Cite \textit{V. Karunakaran} and \textit{N. V. Kalpakam}, Integral Transforms Spec. Funct. 9, No. 1, 19--36 (2000; Zbl 0982.46030) Full Text: DOI OpenURL
Karunakaran, V.; Baby Thilaga, V. Plancherel theorem for vector valued functions and Boehmians. (English) Zbl 0936.46032 Rocky Mt. J. Math. 28, No. 4, 1321-1342 (1998). Reviewer: J.Musielak (Poznań) MSC: 46F12 46F05 46F20 PDF BibTeX XML Cite \textit{V. Karunakaran} and \textit{V. Baby Thilaga}, Rocky Mt. J. Math. 28, No. 4, 1321--1342 (1998; Zbl 0936.46032) Full Text: DOI Link OpenURL