×

Chemotaxis and cross-diffusion models in complex environments: models and analytic problems toward a multiscale vision. (English) Zbl 07544554

MSC:

35B36 Pattern formations in context of PDEs
35B40 Asymptotic behavior of solutions to PDEs
35B44 Blow-up in context of PDEs
35K51 Initial-boundary value problems for second-order parabolic systems
35K57 Reaction-diffusion equations
35Q35 PDEs in connection with fluid mechanics
92C17 Cell movement (chemotaxis, etc.)
91D10 Models of societies, social and urban evolution
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Ahn, J., Kang, K. and Lee, J., Global well-posedness of logarithmic Keller-Segel type systems, J. Differential Equations287 (2021) 185-211. · Zbl 1464.35348
[2] Ahn, J., Kang, K. and Yoon, C., Global classical solutions for chemotaxis-fluid systems in two dimensions, Math. Models Methods Appl. Sci.44 (2021) 2254-2264. · Zbl 1470.35006
[3] Alber, M.et al., Integrating machine learning and multiscale modeling-perspectives, challenges, and opportunities in the biological, biomedical, and behavioral sciences, NPJ Digit. Med.2 (2019) 115.
[4] Alber, M., Chen, N., Lushnikov, P. M. and Newman, S. A., Continuous macroscopic limit of a discrete stochastic model for interaction of living cells, Phys. Rev. Lett.99 (2007) 168102.
[5] Albi, G., Bellomo, N., Fermo, L., Ha, S.-Y., Kim, J., Pareschi, L., Poyato, D. and Soler, J., Vehicular traffic, crowds, and swarms. From kinetic theory and multiscale methods to applications and research perspectives, Math. Mod. Methods Appl. Sci.29 (2019) 1901-2005. · Zbl 1431.35211
[6] Alzahrani, T., Eftimie, R. and Trucu, D., Multiscale modeling of cancer response to oncolytic viral therapy, Math. Biosci.310 (2019) 76-95. · Zbl 1425.92103
[7] Alzahrani, T., Eftimie, R. and Trucu, D., Multiscale moving boundary modeling of cancer interactions with a fusogenic oncolytic virus: The impact of syncytia dynamics, Math. Biosci.323 (2020) 108299. · Zbl 1437.92056
[8] Amann, H., Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value probems, in Function Spaces, Differential Operators and Nonlinear Analysis, , Vol. 133 (Teubner, 1993), pp. 9-126. · Zbl 0810.35037
[9] Andasari, V., Gerisch, A., Lolas, G., South, A. and Chaplain, M. A. J., Mathematical modeling of cancer cell invasion of tissue: Biological insight from mathematical analysis and computational simulation, J. Math. Biol.63 (2022) 141-172. · Zbl 1230.92022
[10] Arias, M., Campos, J. and Soler, J., Cross-diffusion and traveling waves in porous-media flux-saturated Keller-Segel models, Math. Models Methods Appl. Sci.28 (2018) 2103-2129. · Zbl 1411.35157
[11] Arumugam, G. and Tyagi, J., Keller-Segel chemotaxis models: A review, Acta Appl. Math.171 (2021), https://doi.org/10.1007/s10440-020-00374-2. · Zbl 1464.35001
[12] Aylaj, B., Bellomo, N., Gibelli, L. and Reali, A., On a unified multiscale vision of behavioral crowds, Math. Models Methods Appl. Sci., 30 (2020) 1-22. · Zbl 1434.91046
[13] Bellomo, N. and Bellouquid, A., On multiscale models of pedestrian crowds from mesoscopic to macroscopic, Commun. Math. Sci.13 (2015) 1649-1664. · Zbl 1329.90029
[14] Bellomo, N., Bellouquid, A. and Chouhad, N., From a multiscale derivation of nonlinear cross-diffusion models to Keller-Segel models in a Navier-Stokes fluid, Math. Models Methods Appl. Sci.26 (2016) 2041-2069. · Zbl 1353.35038
[15] Bellomo, N., Bellouquid, A., Gibelli, L. and Outada, N., A Quest Towards a Mathematical Theory of Living Systems (Birkhäuser, 2017). · Zbl 1381.92001
[16] Bellomo, N., Bellouquid, A. and Knopoff, D., From the micro-scale to collective crowd dynamics, Multiscale Model. Simul.11 (2013) 943-963. · Zbl 1280.90019
[17] Bellomo, N., Bellouquid, A., Nieto, J. and Soler, J., Multiscale biological tissue models and flux-limited chemotaxis for multicellular growing systems, Math. Models Methods Appl. Sci.20 (2010) 1179-1207. · Zbl 1402.92065
[18] Bellomo, N., Bellouquid, A., Nieto, J. and Soler, J., On the asymptotic theory from microscopic to macroscopic tissue models: An overview with perspectives, Math. Models Methods Appl. Sci.22 (2012) 1130001. · Zbl 1328.92023
[19] Bellomo, N., Bellouquid, A., Tao, Y. and Winkler, M., Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci.25 (2015) 1663-1763. · Zbl 1326.35397
[20] Bellomo, N., Bingham, R., Chaplain, M. A. J., Dosi, G., Forni, G., Knopoff, D. A., Lowengrub, J., Twarock, R. and Virgillito, M. E., A multi-scale model of virus pandemic: Heterogeneous interactive entities in a globally connected world, Math. Models Methods Appl. Sci.30 (2020) 1591-1651. · Zbl 1451.92276
[21] Bellomo, N., Burini, D., Dosi, G., Gibelli, L., Knopoff, D., Outada, N., Terna, P. and Virgillito, M. E., What is life? A perspective of the mathematical kinetic theory of active particles, Math. Models Methods Appl. Sci.31 (2021) 1821-1866. · Zbl 1480.92012
[22] Bellomo, N., Colasuonno, F., Knopoff, D. and Soler, J., From a systems theory of sociology to modeling the onset and evolution of criminality, Math. Models Methods Appl. Sci.10 (2015) 421-441. · Zbl 1403.91278
[23] Bellomo, N., Dosi, G., Knopoff, D. A. and Virgillito, M. E., From particles to firms: On the kinetic theory of climbing up evolutionary landscapes, Math. Models Methods Appl. Sci.30 (2020) 1441-1460. · Zbl 1445.82020
[24] Bellomo, N., Gibelli, L. and Outada, N., On the interplay between behavioral dynamics and social interactions in human crowds, Kinetic Relat. Models12 (2019) 397-409. · Zbl 1420.91384
[25] Bellomo, N. and Ha, S.-Y., A quest toward a mathematical theory of the dynamics of swarms, Math. Models Methods Appl. Sci.27 (2017) 745-770. · Zbl 1366.82077
[26] Bellomo, N., Ha, S.-Y. and Outada, N., Towards a mathematical theory of behavioral swarms, ESAIM: Cont. Theory Vari. Calc.26 (2020) 125. · Zbl 1459.82166
[27] Bellomo, N., Herrero, M. A. and Tosin, A., On the dynamics of social conflicts looking for the black swan, Kinetic Relat. Models6 (2013) 459-479. · Zbl 1276.82028
[28] Bellomo, N., Painter, K., Tao, Y. and Winkler, M., Occurrence versus absence of taxis-driven instabilities in a May-Nowak model for virus infection, SIAM J. Appl. Math.79 (2019) 1990-2010. · Zbl 1428.35615
[29] Bellomo, N. and Soler, J., On the mathematical theory of the dynamics of swarms viewed as a complex system, Math. Models Methods Appl. Sci.22 (2012) 1140006. · Zbl 1242.92065
[30] Bellomo, N. and Winkler, M., A degenerate chemotaxis system with flux limitation: Maximally extended solutions and absence of gradient blow-up, Comm. Partial Differential Equations42 (2017) 436-473. · Zbl 1430.35166
[31] Bellouquid, A. and Chouhad, N., Kinetic models of chemotaxis towards the diffusive limit: Asymptotic analysis, Math. Methods Appl. Sci.39 (2016) 3136-3151. · Zbl 1342.35403
[32] Bellomo, N. and Tao, Y., Stabilization in a chemotaxis model for virus infection, Discrete Contin. Dyn. Syst. Ser. S13 (2020) 105-117. · Zbl 1439.35052
[33] Bellouquid, A. and Delitala, M., Mathematical Modeling of Complex Biological Systems (Birkhäuser, 2006). · Zbl 1178.92002
[34] Bellouquid, A., Nieto, J. and Urrutia, L., About the kinetic description of fractional diffusion equations modeling chemotaxis, Math. Models Methods Appl. Sci.26 (2016) 249-268. · Zbl 1333.35298
[35] Berestycki, H., Nordmann, S. and Rossi, L., Modeling the propagation of riots, collective behaviors and epidemics, Math. Eng.4 (2022) 53 pp.
[36] Berestycki, H., Wei, J. and Winter, M., Existence of symmetric and asymmetric spikes for a crime hotspot model, SIAM J. Math. Anal.46 (2014) 164-202. · Zbl 1347.34035
[37] Bertozzi, A. L., Franco, E., Mohler, G.et al., The challenges of modeling and forecasting the spread of COVID-19, Proc. Natl. Acad. Sci. USA117 (2020) 16732-16738.
[38] Biler, P., Local and global solvability to some parabolic-elliptic systems of chemotaxis, Adv. Math. Sci. Appl.8 (1998) 715-743. · Zbl 0913.35021
[39] Black, T., Eventual smoothness of generalized solutions to a singular chemotaxis-stokes system in 2D, J. Differential Equations265 (2018) 2296-2339. · Zbl 1390.35130
[40] Black, T., Global very weak solutions to a chemotaxis-fluid system with nonlinear diffusion, SIAM J. Math. Anal.50 (2018) 4087-4116. · Zbl 1394.35226
[41] Black, T., Global solvability of chemotaxis-fluid systems with nonlinear diffusion and matrix-valued sensitivities in three dimensions, Nonlinear Anal.180 (2019) 129-153. · Zbl 1420.35433
[42] Black, T., Global generalized solutions to a forager-exploiter model with superlinear degradation and their eventual regularity properties, Math. Models Methods Appl. Sci.30 (2020) 1075-1117. · Zbl 1450.35138
[43] Black, T., Lankeit, J. and Mizukami, M., Singular sensitivity in a Keller-Segel-fluid system, J. Evol. Equ.18 (2018) 561-581. · Zbl 1402.35006
[44] Black, T., Lankeit, J. and Mizukami, M., Stabilization in the Keller-Segel system with signal-dependent sensitivity, Appl. Anal.99 (2020) 2877-2891. · Zbl 1461.35045
[45] Black, T. and Wu, C., Prescribed signal concentration on the boundary: Weak solvability in a chemotaxis-Stokes system with proliferation, Z. Angew. Math. Phys.72 (2021) 135. · Zbl 1467.35099
[46] Blanco, B., Campos, J., Melchor, J. and Soler, J., Modeling interactions among migration, growth and pressure in tumor dynamics, Mathematics9 (2021) 1376.
[47] Bonhoeffer, S., May, R. M., Shaw, G. M. and Nowak, M. A., Virus dynamics and drug therapy, Proc. Natl. Acad. Sci. USA94 (1997) 6971-6976.
[48] Braikhoff, M., Global (weak) solution of the chemotaxis-Navier-Stokes equations with non-homogeneous boundary conditions and logistic growth, Ann. Inst. H. Poincaré Anal. Non Linéaire34 (2017) 1013-1039. · Zbl 1417.92028
[49] Braukhoff, M. and Tang, B. Q., Global solutions for chemotaxis-Navier-Stokes system with Robin boundary conditions, J. Differential Equations269 (2020) 10630-10669. · Zbl 1448.35514
[50] Bresch, D. and Jabin, P. E., Global existence for Navier-Stokes equations for thermodynamically unstable pressure and anisotropic viscous stress, Ann. of Math. (2)188 (2018) 577-684. · Zbl 1405.35133
[51] Burini, D. and Chouhad, N., Hilbert method toward a multiscale analysis from kinetic to macroscopic models for active particles, Math. Models Methods Appl. Sci.27 (2017) 1327-1353. · Zbl 1372.35302
[52] Burini, D. and Chouhad, N., A multiscale view of nonlinear diffusion in biology: From cells to tissues, Math. Models Methods Appl. Sci.29 (2019) 791-823. · Zbl 1427.35291
[53] Burini, D., De Lillo, S. and Gibelli, L., Stochastic differential “nonlinear” games modeling collective learning dynamics, Phys. Life Rev.16 (2016) 123-139.
[54] Caffarelli, L. and Vazquez, J. L., Nonlinear porous medium flow with fractional potential pressure, Arch. Ration. Mech. Anal.202 (2011) 537-565. · Zbl 1264.76105
[55] Calvo, J., Campos, J., Caselles, V., Sánchez, O. and Soler, J., Pattern formation in a flux limited reaction-diffusion equation of porous media type, Invent. Math.206 (2016) 57-108. · Zbl 1388.35094
[56] Calvo, J., Campos, J., Caselles, V., Sánchez, O. and Soler, J., Qualitative behavior for flux-saturated mechanisms: Traveling waves, waiting time and smoothing effects, J. Eur. Math. Soc.19 (2017) 441-472. · Zbl 1379.35167
[57] Campos, J. and Soler, J., Qualitative behavior and traveling waves for flux-saturated porous media equations arising in optimal mass transportation, Nonlinear Anal.137 (2016) 266-290. · Zbl 1386.35198
[58] Cantrell, R. S., Cosner, C. and Manásevich, R., Global bifurcation of solutions for crime modeling equations, SIAM J. Appl. Math.44 (2012) 1340-1358. · Zbl 1248.35212
[59] Cao, X., Global classical solutions in chemotaxis(-Navier)-Stokes system with rotational flux term, J. Differential Equation261 (2017) 6883-6914. · Zbl 1352.35092
[60] Cao, X., Global radial renormalized solution to a producer-scrounger model with singular sensitivities, Math. Models Methods Appl. Sci.30 (2020) 1119-1165. · Zbl 1452.35215
[61] Cao, X., Fluid interaction does not affect the critical exponent in a three-dimensional Keller-Segel-Stokes model, Z. Angew. Math. Phys.71 (2020) 61. · Zbl 1439.35234
[62] Cao, X. and Lankeit, J., Global classical small-data solutions for a three-dimensional chemotaxis Navier-Stokes system involving matrix-valued sensitivities, Calc. Var. Partial Differential Equations55 (2015) 107. · Zbl 1366.35075
[63] Cao, X., Kurima, S. and Mizukami, M., Global existence and asymptotic behavior of classical solutions for a 3D two-species chemotaxis-Stokes system with competitive kinetics, Math. Methods Appl. Sci.41 (2018) 3138-3154. · Zbl 1393.35083
[64] Cao, X., Kurima, S. and Mizukami, M., Global existence and asymptotic behavior of classical solutions for a 3d two-species Keller-Segel-Stokes system with competitive kinetics, Funkcial. Ekvac.62 (2019) 387-408. · Zbl 1442.35323
[65] Cao, X. and Tao, Y., Boundedness and stabilization enforced by mild saturation of taxis in a producer-scrounger model, Nonlinear Anal. Real World Appl.57 (2021) Article ID:103189, 24 pp. · Zbl 1459.92018
[66] Carrillo, J. A., Choi, Y.-P., Hauray, M. and Salem, S., Mean-field limit for collective behavior models with sharp sensitivity regions, J. Eur. Math. Soc.21 (2019) 121-161. · Zbl 1404.92222
[67] Castro, M.et al., The turning point and end of an expanding epidemic cannot be precisely forecast, Proc. Natl. Acad. Soc. USA117 (2020) 26190. · Zbl 1485.92118
[68] Cecconi, F.et al., Predicting the future from the past: An old problem from a modern perspective, Amer. J. Phys.80 (2012) 1001.
[69] Cercignani, C., Illner, R. and Pulvirenti, M., The Kinetic Theory of a Diluted Gas (Springer, 1993).
[70] Chae, M., Kang, K. and Lee, J., Existence of smooth solutions to coupled chemotaxis-fluid equations, Discrete Contin. Dyn. Syst.33 (2013) 2271-2297. · Zbl 1277.35276
[71] Chae, M., Kang, K. and Lee, J., Global existence and temporal decay in Keller-Segel models coupled to fluid equations, Comm. Partial Differential Equations39 (2014) 1205-1235. · Zbl 1304.35481
[72] Chalub, F. A., Markovich, P., Perthame, B. and Schmeiser, C., Kinetic models for chemotaxis and their drift-diffusion limits, Monatsh. Math.142 (2004) 123-141. · Zbl 1052.92005
[73] Chaplain, M. A. J. and Lolas, G., Mathematical modeling of cancer invasion of tissue: The role of the urokinase plasminogen activation system, Math. Models Methods Appl. Sci.15 (2005) 1685-1734. · Zbl 1094.92039
[74] Chaplain, M. A. J. and Lolas, G., Mathematical modeling of tissue invasion, Netw. Heterog. Media1 (2006) 399-439. · Zbl 1108.92023
[75] Chavanis, P.-H. and Sire, C., Kinetic and hydrodynamic models of chemotactic aggregation, Physica A384 (2007) 199.
[76] Chen, Z., Dampening effect of logistic source in a two-dimensional haptotaxis system with nonlinear zero-order interaction, J. Math. Anal. Appl.492 (2020) 124435. · Zbl 1462.35412
[77] Chertock, A., Fellner, K., Kurganov, A., Lorz, A. and Markowich, P. A., Sinking, merging and stationary plumes in a coupled chemotaxis-fluid model: A high-resolution numerical approach, J. Fluid Mech.694 (2012) 155-190. · Zbl 1250.76191
[78] Chung, Y.-S. and Kang, K., Existence of global solutions for a chemotaxis-fluid system with nonlinear diffusion, J. Math. Phys.57 (2016) 041503. · Zbl 1339.35331
[79] Cieślak, T. and Stinner, C., New critical exponents in a fully parabolic quasilinear Keller-Segel system and applications to volume filling models, J. Differential Equations258 (2015) 2080-2113. · Zbl 1331.35041
[80] Cintra, W., Morales-Rodrigo, C. and Suarez, A., Coexistence states in a cross-diffusion system of a predator-prey model with predator satiation term, Math. Models Methods Appl. Sci.28 (2018) 2131-2159. · Zbl 1416.35104
[81] Cohen, L. E. and Felson, M., Social change and crime rate trends: A routine activity approach, Amer. Sociol. Rev.44 (1979) 588-608.
[82] Conte, M., Casas-Tintó, S. and Soler, J., Modeling invasion patterns in the glioblastoma battlefield, PLOS Comput. Biol.17 (2021) e1008632.
[83] Cooper, E. L., Evolution of immune system from self/not self to danger to artificial immune system, Phys. Life Rev.7 (2010) 55-78.
[84] Corbin, N. G., Engwer, C., Klar, A., Nieto, J., Soler, J., Surulescu, C. and Wenske, M., Modeling glioma invasion with anisotropy- and hypoxia-triggered motility enhancement: From subcellular dynamics to macroscopic PDEs with multiple taxis, Math. Models Methods Appl. Sci.31 (2021) 177-222. · Zbl 1473.92007
[85] A. Deaton, Measuring and Understanding Behavior, Welfare, and Poverty, Prize Lecture (2015), https://www.nobelprize.org/uploads/2018/06/deaton-lecture.pdf.
[86] Del Teso, F., Enda, J. and Vazquez, J. L., The one-phase fractional Stephan problem, Math. Models Methods Appl. Sci.31(1) (2021) 83-131. · Zbl 1473.80010
[87] DiFrancesco, M., Lorz, A. and Markowich, P. A., Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: Global existence and asymptotic behavior, Discrete Contin. Dyn. Syst.28 (2010) 1437-1453. · Zbl 1276.35103
[88] Dobrushin, R. L., Vlasov equations, Funct. Anal. Appl.13 (1979) 115-123. · Zbl 0422.35068
[89] Dolak, Y. and Schmeiser, C., Kinetic models for chemotaxis: Hydrodynamic limits and spatio-temporal mechanisms, J. Math. Biol.51 (2005) 595-615. · Zbl 1077.92003
[90] Dolfin, M. and Lachowicz, M., Modeling opinion dynamics: How the network enhances consensus, Netw. Heterog. Media10 (2015) 421-441. · Zbl 1377.91142
[91] Dolfin, M., Leonida, L. and Outada, N., Modeling human behavior in economics and social science, Phys. Life Rev.22-23 (2017) 1-21.
[92] Dombrowski, Cisneros, L., Chatkaew, S., Goldstein, R. and Kessler, J., Self-concentration and large-scale coherence in bacterial dynamics, Phys. Rev. Lett.93 (2004) 098103.
[93] D’Orsogna, M. R. and Chou, T., Optimal cytoplasmic transport in viral infections, Plos One4 (2009) e816.
[94] Duan, R., Li, X. and Xiang, Z., Global existence and large time behavior for a two-dimensional chemotaxis-Navier-Stokes system, J. Differential Equations263 (2017) 6284-6316. · Zbl 1378.35160
[95] Duan, R., Lorz, A. and Markowich, P. A., Global solutions to the coupled chemotaxis-fluid equations, Comm. Partial Differential Equations35 (2010) 1635-1673. · Zbl 1275.35005
[96] Duan, R. and Xiang, Z., A note on global existence for the chemotaxis-Stokes model with nonlinear diffusion, Int. Math. Res. Not.35(8) (2014) 1833-1852. · Zbl 1323.35184
[97] Engwer, C., Stinner, C. and Surulescu, C., On a structured multiscale model for acid-mediated tumor invasion: The effects of adhesion and proliferation, Math. Models Methods Appl. Sci.27 (2017) 1335-1390. · Zbl 1371.35149
[98] Elaiw, A. M. and Al Agha, A. D., Analysis of a delayed and diffusive oncolytic M1 virotherapy model with immune response, Nonlinear Anal. Real World Appl.55 (2020) 103116. · Zbl 1453.92130
[99] Elaiw, A. M. and AlShamrani, N. H., Stability of a general delay-distributed virus dynamics model with multi-staged infected progression and immune response, Math. Methods Appl. Sci.40 (2017) 699-719. · Zbl 1402.92387
[100] Elaiw, A. M., Alade, T. O. and Alsulami, S. M., Global dynamics of delayed CHIKV infection model with multitarget cells, J. Appl. Math. Comput.60 (2019) 303-325. · Zbl 1422.34242
[101] Escudero, C., The fractional Keller-Segel model, Nonlinearity19 (2006) 2909-2918. · Zbl 1121.35068
[102] Espejo, E. E. and Suzuki, T., Reaction terms avoiding aggregation in slow fluids, Nonlinear Anal. Real World Appl.21 (2015) 110-126. · Zbl 1302.35102
[103] Espejo, E. E. and Winkler, M., Global classical solvability and stabilization in a two-dimensional chemotaxis-Navier-Stokes system modeling coral fertilization, Nonlinearity31 (2018) 1227-1259. · Zbl 1392.35042
[104] Evje, S. and Winkler, M., Mathematical analysis of two competing cancer cell migration mechanisms driven by interstitial fluid flow, J. Nonlin. Sci.30 (2020) 1809-1847. · Zbl 1442.35469
[105] Duarte-Rodriguez, A., Ferreira, L. C. F. and Villamizar-Roa, E. J., Global existence for an attraction-repulsion chemotaxis fluid model with logistic source, Discrete Contin. Dyn. Syst. Ser. B24 (2019) 423-447. · Zbl 1406.35428
[106] Figalli, A. and Kang, M. J., A rigorous derivation from the kinetic Cucker-Smale model to the pressureless Euler system with nonlocal alignment, Anal. PDE12 (2019) 843-866. · Zbl 1405.35206
[107] Freitag, M., Global solutions to a higher-dimensional system related to crime modeling, Math. Methods Appl. Sci.41 (2018) 6326-6335. · Zbl 1401.35203
[108] Fuest, M., Boundedness enforced by mildly saturated conversion in a chemotaxis-May-Nowak model for virus infection, J. Math. Anal. Appl.472 (2019) 1729-1740. · Zbl 1412.35340
[109] Fuest, M., Global solutions near homogeneous steady states in a multidimensional population model with both predator- and prey-taxis, SIAM J. Math. Anal.52 (2020) 5865-5891. · Zbl 1458.35222
[110] Fujita, H. and Kato, T., On the Navier-Stokes initial value problem I, Arch. Ration. Mech. Anal.16 (1964) 269-315. · Zbl 0126.42301
[111] Furioli, G., Pulvirenti, A., Terraneo, E. and Toscani, G., Fokker-Planck equations in the modeling of socio-economic phenomena, Math. Models Methods Appl. Sci.27 (2017) 115-158. · Zbl 1362.35305
[112] Gächter, S. and Schultz, J. F., Intrinsic honesty and the prevalence of rule violations across societies, Nature531 (2016) 496-499.
[113] Gatenby, R. A. and Gawlinski, E. T., A reaction-diffusion model of cancer invasion, Cancer Res.56 (1996) 5745-5753.
[114] Gatenby, R. A., Gawlinski, E. T., Gmitro, A. F., Kaylor, B. and Gillies, R. J., Acid mediated tumor invasion: A multidisciplinary study, Cancer Res.66 (2006) 5216-5223.
[115] Gatenby, R. A. and Maini, P. K., Mathematical oncology: Cancer summed up, Nature421 (2003) 321-323.
[116] Gatenby, R. A., Vincent, T. L. and Gillies, R. J., Evolutionary dynamics in carcinogenesis, Math. Models Methods Appl. Sci.15 (2005) 1619-1638. · Zbl 1077.92031
[117] Gibelli, L., Elaiw, A. M. and Alghamdi, M. A., Heterogeneous population dynamics of active particles: Progression, mutations, and selection dynamics, Math. Models Methods Appl. Sci.27 (2017) 617-640. · Zbl 1366.82078
[118] Gorban, A. N. and Karlin, I., Hilbert’s \(6\) th problem: Exact and approximate hydrodynamic manifolds for kinetic equations, Bull. Amer. Math. Soc.51 (2014) 187-246. · Zbl 1294.35052
[119] Goudon, T., Nkonga, B., Rascle, M. and Ribot, M., Self-organized populations interacting under pursuit evasion dynamics, Physica D: Nonlinear Phenomena304-305 (2015) 1-22. · Zbl 1365.92144
[120] Gu, Y., Wang, Q. and Yi, G., Stationary patterns and their selection mechanism of urban crime models with heterogeneous near-repeat victimization effect, Eur. J. Appl. Math.28 (2017) 141-178. · Zbl 1376.91125
[121] Haase, A. T., Henry, K., Zupancic, M., Sedgewick, G., Faust, R. A., Melroe, H., Cavert, W., Gebhard, K., Staskus, K., Zhang, Z. Q., Dailey, P. J., Balfour, H. H., Erice, A. and Perelson, A. S., Quantitative image analysis of HIV-1 infection in lymphoid tissue, Science274 (1996) 985-989.
[122] Hanahan, D. and Weinberg, R. A., Hallmarks of cancer: The next generation, Cell144 (2011) 646-674.
[123] Hartwell, H. L., Hopfield, J. J., Leibler, S. and Murray, A. W., From molecular to modular cell biology, Nature402 (1999) c47-c52.
[124] Hartwell, L. H., Yeast and Cancer, Nobel Lecture (2001).
[125] Haskovec, J. and Schmeiser, C., Stochastic particle approximation for measure valued solutions of the 2D Keller-Segel system, J. Statist. Phys.135 (2009) 133-151. · Zbl 1173.82021
[126] Haskovec, J. and Schmeiser, C., Convergence of a stochastic particle approximation for measure solutions of the 2D Keller-Segel system, Comm. Partial Differential Equations36 (2011) 940-960. · Zbl 1229.35111
[127] He, S. and Tadmor, E., Suppressing chemotactic blow-up through a fast splitting scenario on the plane, Arch. Ration. Mech. Anal.232 (2019) 951-986. · Zbl 1408.35066
[128] Heihoff, F., Generalized solutions for a system of partial differential equations arising from urban crime modeling with a logistic source term, Z. Angew. Math. Phys.71 (2020) 80. · Zbl 1434.35246
[129] Heihoff, F., Global mass-preserving solutions for a two-dimensional chemotaxis system with rotational flux components coupled with a full Navier-Stokes equation, Discrete Contin. Dyn. Syst. Ser. B25 (2020) 4703-4719. · Zbl 1465.35107
[130] Herrero, M. A., On the role of mathematics in biology, J. Math. Biol.54 (2007) 887-889. · Zbl 1180.92003
[131] Hethcote, H. W., The mathematics of infectious diseases, SIAM Rev.42 (2000) 599-653. · Zbl 0993.92033
[132] Hilbert, D., Mathematical problems, Bull. Amer. Math. Soc.8 (1902) 437-479. · JFM 33.0976.07
[133] Hill, N. A. and Pedley, T. J., Bioconvection, Fluid Dyn. Res.37 (2005) 1-20. · Zbl 1153.76455
[134] Hillen, T. and Othmer, H. G., The diffusion limit of transport equations derived from velocity jump processes, SIAM J. Appl. Math.61 (2000) 751-775. · Zbl 1002.35120
[135] Hillen, T. and Othmer, H., The diffusion limit of transport equations derived from velocity-jump processes, SIAM J. Appl. Math.61 (2000) 751-775. · Zbl 1002.35120
[136] Hillen, T. and Painter, K. J., A user’s guide to PDE models for chemotaxis, J. Math. Biol.58 (2009) 183-217. · Zbl 1161.92003
[137] Hillen, T., Painter, K. and Winkler, M., Convergence of a cancer invasion model to a logistic chemotaxis model, Math. Models Methods Appl. Sci.23 (2013) 165-198. · Zbl 1263.35204
[138] Hillesdon, A. J., Pedley, T. J. and Kessler, O., The development of concentration gradients in a suspension of chemotactic bacteria, Bull. Math. Biol.57 (1995) 299-344. · Zbl 0814.92004
[139] Hirata, M., Kurima, S., Mizukami, M. and Yokota, T., Boundedness and stabilization in a two-dimensional two-species chemotaxis-Navier-Stokes system with competitive kinetics, J. Differential Equations263 (2017) 470-490. · Zbl 1362.35049
[140] Hoffman, W., Heinemann, D. and Wiens, J. A., The ecology of seabird feeding flocks in Alaska, Auk.98 (1981) 437-456.
[141] Holmdahl, I. and Buckee, C., Wrong but useful — What Covid-19 epidemiologic models can and cannot tell us, New Engl. J. Med.383 (2020) 303.
[142] Horstmann, D., From 1970 until present: The Keller-Segel model in chemotaxis and its consequences: Jahresber I, Jahresber. Deutsche Math.-Verein.105 (2003) 103-165. · Zbl 1071.35001
[143] Htwe, M., Pang, P. Y. H. and Wang, Y., Asymptotic behavior of classical solutions of a three-dimensional Keller-Segel-Navier-Stokes system modeling coral fertilization, Z. Angew. Math. Phys.71 (2020) 90. · Zbl 1442.35031
[144] Hu, B. and Lankeit, J., Boundedness of solutions to a virus infection model with saturated chemotaxis, J. Math. Anal. Appl.468 (2018) 344-358. · Zbl 1396.92006
[145] Hu, B. and Tao, Y., To the exclusion of blow-up in a three-dimensional chemotaxis-growth model with indirect attractant production, Math. Models Methods Appl. Sci.26 (2016) 2111-2128. · Zbl 1351.35076
[146] Jäger, W. and Luckhaus, S., On explosions of solutions to a system of partial differential equations modeling chemotaxis, Trans. Amer. Math. Soc.329 (1992) 819-824. · Zbl 0746.35002
[147] Jabin, P. E. and Soler, J., A coupled Boltzmann & Navier-Stokes fragmentation model induced by a fluid-particle-spring interaction, SIAM J. Multiscale Mod. Sim.8 (2010) 1244-1268. · Zbl 1209.82033
[148] Jin, H.-Y., Boundedness and large time behavior in a two-dimensional Keller-Segel-Navier-Stokes system with signal-dependent diffusion and sensitivity, Discrete Contin. Dyn. Syst.38 (2018) 3595-3616. · Zbl 1397.35029
[149] Jin, C., Global bounded weak solutions and asymptotic behavior to a chemotaxis-Stokes model with non-Newtonian filtration slow diffusion, J. Differential Equations287 (2021) 148-184. · Zbl 1466.35349
[150] Johnson, S. D., Bowers, K. and Hirsched, A., New insights into the spatial and temporal distribution of repeat victimisation, Br. J. Criminol.37 (1997) 224-241.
[151] Jüngel, A., Entropy Methods for Diffusive Partial Differential Equations, (2016). · Zbl 1361.35002
[152] Ke, Y. and Zheng, J., An optimal result for global existence in a three-dimensional Keller-Segel-Navier-Stokes system involving tensor-valued sensitivity with saturation, Calc. Var. Partial Differential Equation58 (2019) 109. · Zbl 1412.35172
[153] Keller, E. F. and Segel, L. A., Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol.26 (1970) 399-415. · Zbl 1170.92306
[154] Keller, E. F. and Segel, L. A., Model for chemotaxis, J. Theor. Biol.30 (1971) 225-234. · Zbl 1170.92307
[155] G. L. Kelling and J. Q. Wilson, Broken Windows (1982), The Atlantic, https://www.theatlantic.com/magazine/archive/1982/03/broken-windows/304465.
[156] Kim, J., Poyato, D. and Soler, J., Hydrodynamic limit of a coupled Cucker-Smale system with strong and weak internal variable relaxation, Math. Mod. Methods Appl. Sci.31 (2021) 1163-1235. · Zbl 1475.92218
[157] Kiselev, A. and Ryzhik, L., Biomixing by chemotaxis and efficiency of biological reactions: The critical reaction case, J. Math. Phys.53 (2012) 115609. · Zbl 1300.92015
[158] Kiselev, A. and Ryzhik, L., Biomixing by chemotaxis and enhancement of biological reactions, Comm. Partial Differential Equations37 (2012) 298-318. · Zbl 1236.35190
[159] Kiselev, A. and Xu, X., Suppression of chemotactic explosion by mixing, Arch. Ration. Mech. Anal.222 (2016) 1077-1112. · Zbl 1351.35233
[160] Korobeinikov, A., Global properties of basic virus dynamics models, Bull. Math. Biol.66 (2004) 879-883. · Zbl 1334.92409
[161] Kolokolnikov, T., Ward, M. J. and Wei, J., The stability of hotspot patterns for reaction-diffusion models of urban crime, Discrete Cont. Dyn. Syst. Ser. B19 (2014) 1373-1401. · Zbl 1304.35051
[162] Kowalczyk, R., Preventing blow-up in a chemotaxis model, J. Math. Anal. Appl.305 (2005) 566-588. · Zbl 1065.35063
[163] Kozono, H., Miura, M. and Sugiyama, Y., Existence and uniqueness theorem on mild solutions to the Keller-Segel system coupled with the Navier-Stokes fluid, J. Funct. Anal.270 (2016) 1663-1683. · Zbl 1343.35069
[164] Kurima, S. and Mizukami, M., Global weak solutions to a 3-dimensional degenerate and singular chemotaxis-Navier-Stokes system with logistic source, Nonlin. Anal. Real World Appl.46 (2019) 98-115. · Zbl 1414.35237
[165] Lankeit, J., Long-term behavior in a chemotaxis fluid system with logistic source, Math. Models Methods Appl. Sci.26 (2016) 2071-2109. · Zbl 1354.35059
[166] Lapidus, R. and Schiller, R., Model for the chemotactic response of a bacterial population, Biophys. J.16 (1976) 779-789.
[167] Leray, J., Sur le mouvement d’un liquide visqueus amplissant l’espace, Acta Math.63 (1934) 193-248. · JFM 60.0726.05
[168] Li, F. and Li, Y., Global existence and boundedness of weak solutions to a chemotaxis Stokes system with rotational flux term, Z. Angew. Math. Phys.70 (2019) 102. · Zbl 1417.35077
[169] Li, D., Mu, C., Zheng, P. and Lin, K., Boundedness in a three-dimensional Keller-Segel-Stokes system involving tensor-valued sensitivity with saturation, Discrete Contin. Dyn. Syst. Ser. B24 (2019) 831-849. · Zbl 1404.35228
[170] Li, J. and Wang, Y., Boundedness in a haptotactic cross-diffusion system modeling oncolytic virotherapy, J. Differential Equations270 (2021) 94-113. · Zbl 1452.35077
[171] Li, J. and Wang, Y., Asymptotic behavior in a doubly tactic resource consumption model with proliferation, Z. Angew. Math. Phys.72 (2021) 21. · Zbl 1464.35033
[172] Li, X., Global classical solutions in a Keller-Segel(-Navier)-Stokes system modeling coral fertilization, J. Differential Equations267 (2019) 6290-6315. · Zbl 1420.35124
[173] Li, X., Wang, Y. and Xiang, Z., Global existence and boundedness in a 2D Keller-Segel-Stokes system with nonlinear diffusion and rotational flux, Commun. Math. Sci.14 (2016) 1889-1910. · Zbl 1351.35073
[174] Li, X. and Xiao, Y., Global existence and boundedness in a 2D Keller-Segel-Stokes system, Nonlin. Anal. Real World Appl.37 (2017) 14-30. · Zbl 1394.35241
[175] Lin, K., Mu, C. and Zhou, D., Stabilization in a higher-dimensional attraction-repulsion chemotaxis system if repulsion dominates over attraction, Math. Models Methods Appl. Sci.28 (2018) 1105-1134. · Zbl 1391.35200
[176] Lindstrom, M. R. and Bertozzi, A. L., Qualitative features of a nonlinear, nonlocal, agent-based PDE model with applications to homelessness, Math. Models Methods Appl. Sci.30 (2020) 1863-1891. · Zbl 1455.35262
[177] Liţcanu, G. and Morales-Rodrigo, C., Asymptotic behavior of global solutions to a model of cell invasion, Math. Models Methods Appl. Sci.20 (2010) 1721-1758. · Zbl 1213.35250
[178] Liu, J., Boundedness in a chemotaxis-(Navier-) Stokes system modeling coral fertilization with slow \(p\)-Laplacian diffusion, J. Math. Fluid Mech.22 (2020) 10. · Zbl 1433.35425
[179] Liu, J., Global weak solutions in a three-dimensional degenerate chemotaxis-Navier-Stokes system modeling coral fertilization, Nonlinearity33 (2020) 3237-3297. · Zbl 1440.35331
[180] Liu, J., Large time behavior in a three-dimensional degenerate chemotaxis-Stokes system modeling coral fertilization, J. Differential Equations269 (2020) 1-55. · Zbl 1447.35061
[181] Liu, J. and Wang, Y., Global weak solutions in a three-dimensional Keller-Segel-Navier-Stokes system involving a tensor-valued sensitivity with saturation, J. Differential Equations262 (2017) 5271-5305. · Zbl 1377.35148
[182] Liu, J. and Wang, Y., Global existence and boundedness in a Keller-Segel-(Navier-) Stokes system with signal-dependent sensitivity, J. Math. Anal. Appl.447 (2017) 499-528. · Zbl 1354.35170
[183] Liu, J. and Wang, Y., Boundedness and decay property in a three-dimensional Keller-Segel-Stokes system involving tensor-valued sensitivity with saturation, J. Differential Equations261 (2016) 967-999. · Zbl 1336.35191
[184] Liu, L., Zheng, J. and Bao, G., Global weak solutions in a three-dimensional Keller-Segel-Navier-Stokes system modeling coral fertilization, Discrete Contin. Dyn. Syst. Ser. B25 (2020) 3437-3460. · Zbl 1439.35244
[185] Liu, Y., Global existence and boundedness of classical solutions to a forager-exploiter model with volume-filling effects, Nonlinear Anal. Real World Appl.50 (2019) 519-531. · Zbl 1440.35192
[186] Liu, Y. and Zhuang, Y., Boundedness in a high-dimensional forager-exploiter model with nonlinear resource consumption by two species, Z. Angew. Math. Phys.71 (2020) 51. · Zbl 1448.35292
[187] Z. Liu, P. Magal, O. Seydi and G. Webb, Understanding unreported cases in the 2019-nCov epidemic outbreak in Wuhan, China, and the importance of major public health interventions, 2020 by the author(s). Distributed under a Creative Commons CC BY license.
[188] Lorz, A., A coupled Keller-Segel-Stokes model: Global existence for small initial data and blow-up delay, Commun. Math. Sci.10 (2012) 555-574. · Zbl 1282.35138
[189] Maini, P. K., Myerscough, M. R., Winters, K. H. and Murray, J. D., Bifurcating spatially heterogeneous solutions in a chemotaxis model for biological pattern formation, Bull. Math. Biol.53 (1991) 701-719. · Zbl 0725.92004
[190] May, R. M., Uses and abuses of mathematics in biology, Science303 (2004) 338-342.
[191] Manrubia, S., The uncertain future in how a virus spreads, Physics13, 166, https://doi.org/10.1103/Physics.13.166.
[192] Mei, L. and Wei, J., The existence and stability of spike solutions for a chemotaxis system modeling crime pattern formation, Math. Models Methods Appl. Sci.30 (2020) 1727-1764. · Zbl 1455.35072
[193] Mizukami, M., How strongly does diffusion or logistic-type degradation affect existence of global weak solutions in a chemotaxis-Navier-Stokes system?Z. Angew. Math. Phys.70 (2019) 49. · Zbl 1417.35067
[194] P. Musiani and G. Forni, Basic Immunology 2019 (2019), https://issuu.com/guidoforni5/docs/2019i.
[195] Nagai, T., Blow-up of radially symmetric solutions to a chemotaxis system, Adv. Math. Sci. Appl.5 (1995) 581-601. · Zbl 0843.92007
[196] Neunzert, H., An introduction to the nonlinear Boltzmann-Vlasov equation, in Kinetic Theories and the Boltzmann Equation, , Vol. 1048 (Springer-Verlag, 1984). · Zbl 0575.76120
[197] Nie, Y. and Zheng, X., Global well-posedness for the two-dimensional coupled chemotaxis-generalized Navier-Stokes system with logistic growth, J. Differential Equations269 (2020) 5379-5433. · Zbl 1442.35058
[198] Nieto, J. and Urrutia, L., A multiscale model of cell mobility: From a kinetic to a hydrodynamic description, J. Math. Anal. Appl.433 (2016) 1055-1071. · Zbl 1354.92010
[199] Nowak, M. A. and Bangham, C. R. M., Population dynamics of immune responses to persistent viruses, Science272 (1996) 74-79.
[200] Nowak, M. A. and May, R., Virus Dynamics: Mathematical Principles of Immunology and Virology (Oxford University Press, 2000). · Zbl 1101.92028
[201] Othmer, H. G., Dunbar, S. R. and Alt, W., Models of dispersal in biological systems, J. Math. Biol.26 (1988) 263-298. · Zbl 0713.92018
[202] Othmer, H. G. and Hillen, T., The diffusion limit of transport equations II: Chemotaxis equations, SIAM J. Appl. Math.62 (2002) 1222-1250. · Zbl 1103.35098
[203] Outada, N., Vauchelet, N., Akrid, T. and Khaladi, M., From kinetic theory of multicellular systems to hyperbolic tissue equations: Asymptotic limits and computing, Math. Models Methods Appl. Sci.26 (2016) 2709-2734. · Zbl 1356.35130
[204] Painter, K. J., Mathematical models for chemotaxis and their applications in self-organisation phenomena, J. Theor. Biol.481 (2019) 162-182. · Zbl 1422.92025
[205] Pang, P. Y. H. and Wang, Y., Global boundedness of solutions to a chemotaxis-haptotaxis model with tissue remodeling, Math. Models Methods Appl. Sci.28 (2018) 2211-2235. · Zbl 1416.35052
[206] Pang, P. Y. H. and Wang, Y., Asymptotic behavior of solutions to a tumor angiogenesis model with chemotaxis-haptotaxis, Math. Models Methods Appl. Sci.29 (2020) 1727-1764.
[207] Pan, X., Wang, L. and Hu, X., Boundedness and stabilization of solutions to a chemotaxis May-Nowak model, Z. Angew. Math. Phys.72 (2021) 52. · Zbl 1466.35044
[208] Park, J., Poyato, D. and Soler, J., Filippov trajectories and clustering in the Kuramoto model with singular couplings, J. Eur. Math. Soc.23 (2021) 3193-3278. · Zbl 1473.35543
[209] Peng, L., Trucu, D., Lin, P., Thompson, A. and Chaplain, M. A. J., A multiscale mathematical model of tumour invasive growth, Bull. Math. Biol.79 (2017) 389-429. · Zbl 1373.92065
[210] Peng, Y. and Xiang, Z., Global existence and convergence rates to a chemotaxis-fluids system with mixed boundary conditions, J. Differential Equations267 (2019) 1277-1321. · Zbl 1412.35174
[211] Peng, Y. and Xiang, Z., Global existence and boundedness in a 3D Keller-Segel-Stokes system with nonlinear diffusion and rotational flux, Z. Angew. Math. Phys.68 (2017) 68. · Zbl 1386.35189
[212] Perthame, B., Transport Equations in Biology (Birkhäuser, 2007). · Zbl 1185.92006
[213] Piff, P. K., Stancato, D. M., Coté, S., Mendoza-Denton, R. and Keltner, D., Higher social class predicts increased unethical behavior, Proc. Natl. Acad. Sci. USA109 (2014) 4086-4091.
[214] D. Poyato, Filippov flows and mean-field limits in the kinetic singular Kuramoto model, preprint (2019), arXiv:1903.01305.
[215] Poyato, D. and Soler, J., Euler-type equations and commutators in singular and hyperbolic limits of kinetic Cucker-Smale models, Math. Models Methods Appl. Sci.27 (2017) 1089-1152. · Zbl 1369.35050
[216] Qi, D. and Zheng, J., A new result for the global existence and boundedness of weak solutions to a chemotaxis-Stokes system with rotational flux term, Z. Angew. Math. Phys.72 (2021) 88. · Zbl 1466.35089
[217] Rechoa, P., Halloub, A. and Hannezoe, E., Theory of mechano chemical patterning in biphasic biological tissues, Proc. Natl. Acad. Sci. USA70 (2019) 5344-5349.
[218] Ren, G. and Liu, B., Global boundedness of solutions to a chemotaxis-fluid system with singular sensitivity and logistic source, Commun. Pure Appl. Anal.19 (2020) 3843-3883. · Zbl 1442.35038
[219] G. Ren and B. Liu, Global classical solvability in a three-dimensional haptotaxis system modeling oncolytic virotherapy, to appear in Math. Methods Appl. Sci. · Zbl 1475.35363
[220] Ribba, B., Saut, O., Colin, T., Bresch, D., Grenier, E. and Boissel, J. P., A multiscale mathematical model of avascular tumor growth to investigate the therapeutic benefit of anti-invasive agents, J. Theor. Biol.243 (2006) 532-541. · Zbl 1447.92105
[221] Roda, W. C.et al., Why is it difficult to accurately predict the COVID-19 epidemic?Infect. Diseases Model.5 (2020) 271.
[222] Rodriguez, N. and Winkler, M., Relaxation by nonlinear diffusion enhancement in a two-dimensional cross-diffusion model for urban crime propagation, Math. Models Methods Appl. Sci.30 (2020) 2105-2137. · Zbl 1451.35226
[223] N. Rodriguez and M. Winkler, On the global existence and qualitative behavior of one-dimensional solutions to a model for urban crime, to appear in Eur. J. Appl. Math., in press.
[224] Ruiz-Baier, R. and Tian, C., Mathematical analysis and numerical simulation of pattern formation under cross-diffusion, Nonlinear Anal. Real World Appl.14 (2013) 601-612. · Zbl 1263.92007
[225] Saint-Raymond, L., Hydrodynamic Limits of the Boltzmann Equation, , Vol. 1971 (Springer, 2009). · Zbl 1171.82002
[226] Salvi, S., Corruption corrupts: Society-level rule violations affect individuals’ intrinsic honesty, Nature531 (2016) 456-457.
[227] Schiesser, W. E., Computational Chemotaxis Models for Neurodegenerative Diseases (World Scientific, Singapore, 2017).
[228] Sfakianakis, N., Madzvamuse, A. and Chaplain, M. A. J., A hybrid multiscale model for cancer invasion of the extracellular matrix, Multiscale Models Simul. (2020). · Zbl 1443.92080
[229] Short, M. B., Bertozzi, A. L. and Brantingham, P. J., Nonlinear patterns in Urban crime: Hotspots, bifurcations, and suppression, SIAM J. Appl. Dym. Syst.9 (2010) 462-483. · Zbl 1282.91273
[230] Short, M. B., Bertozzi, A. L., Brantingham, P. J. and Tita, G. E., Dissipation and displacement of hotspots in reaction-diffusion model of crime, Proc. Natl. Acad. Sci. USA107 (2010) 3961-3965.
[231] Short, M. B., D’Orsogna, M. R., Pasour, V. B., Tita, G. E., Brantingham, P. J., Bertozzi, A. L. and Chayes, L. B., A statistical model of criminal behavior, Math. Models Methods Appl. Sci.18 (2008) 1249-1267. · Zbl 1180.35530
[232] Short, M. B., McCalla, S. G. and D’Orsogna, M. R., Modeling radicalization: How small violent fringe sects develop into large indoctrinated societies, Roy. Soc. Open Sci.4 (2017).
[233] Shvydkoy, R. and Tadmor, E., Topologically-based fractional diffusion and emergent dynamics with short-range interactions, SIAM J. Math. Anal.52 (2020) 5792-5839. · Zbl 1453.92371
[234] Slemrod, M., From Boltzmann to Euler: Hilbert’s \(6\) th problem revisited, Comput. Math. Appl.63 (2013) 1477-1501. · Zbl 1382.76215
[235] Suzuki, T., Free Energy and Self-Interacting Particles (Birkhäuser, 2005). · Zbl 1082.35006
[236] Szymánska, Z., Morales-Rodrigo, C., Lachowicz, M. and Chaplain, M. A. J., Mathematical modeling of cancer invasion of tissue: The role and effect of nonlocal interactions, Math. Models Methods Appl. Sci.19 (2009) 257-281. · Zbl 1171.35066
[237] Stancevic, O., Angstmann, C. N., Murray, J. M. and Henry, B. I., Turing patterns from dynamics of early HIV infection, Bull. Math. Biol.75 (2013) 774-795. · Zbl 1273.92035
[238] Stinner, C., Surulescu, C. and Uatay, A., Global existence of a go-or-grow multiscale model for tumor invasion with therapy, Math. Models Methods Appl. Sci.26 (2016) 2163-2201. · Zbl 1348.35282
[239] Tania, N., Vanderleib, B., Heathc, J. P. and Edelstein-Keshetc, L., Role of social interactions in dynamic patterns of resource patches and forager aggregation, Proc. Natl. Acad. Sci. USA109 (2012) 1128-1133.
[240] Tao, W. and Li, Y., Global weak solutions for the three-dimensional chemotaxis-Navier-Stokes system with slow \(p\)-Laplacian diffusion, Nonlinear Anal. Real World Appl.45 (2019) 26-52. · Zbl 1411.35064
[241] Tao, W. and Li, Y., Boundedness of weak solutions of a chemotaxis-Stokes system with slow \(p\)-Laplacian diffusion, J. Differential Equations268 (2020) 6872-6919. · Zbl 1439.35213
[242] Tao, X., Global weak solutions to an oncolytic viral therapy model with doubly haptotactic terms, Nonlinear Anal. Real World Appl.60 (2021) 103276. · Zbl 1466.92083
[243] Tao, X., Global classical solutions to an oncolytic viral therapy model with triply haptotactic terms, Acta Appl. Math.171 (2021) 5. · Zbl 1464.35379
[244] Tao, Y., Global existence for a haptotaxis model of cancer invasion with tissue remodeling, Nonlinear Anal. Real World Appl.12 (2011) 418-435. · Zbl 1205.35144
[245] Tao, Y. and Winkler, M., Effects of signal-dependent motilities in a Keller-Segel-type reaction-diffusion system, Math. Models Methods Appl. Sci.27 (2017) 1645-1683. · Zbl 06761738
[246] Tao, Y. and Winkler, M., Large time behavior in a forager-exploiter model with different taxis strategies for two groups in search of food, Math. Models Methods Appl. Sci.29 (2019) 2151-2182. · Zbl 1425.35200
[247] Tao, Y. and Winkler, M., Global classical solutions to a doubly haptotactic cross-diffusion system modeling oncolytic virotherapy, J. Differential Equations268 (2020) 4973-4997. · Zbl 1430.35132
[248] Tao, Y. and Winkler, M., Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction, Discr. Cont. Dyn. Syst.41 (2021) 439-454. · Zbl 1458.35076
[249] Tao, Y. and Winkler, M., A critical virus production rate for blow-up suppression in a haptotatxis model for oncolytic virotherapy, Nonlinear Anal.198 (2020) 111870. · Zbl 1442.35480
[250] Tao, Y. and Winkler, M., Asymptotic stability of spatial homogeneity in a haptotaxis model for onclolytic virotherapy, to appear in Proc. Roy. Soc. Edinburgh Sec. A.152 (2022) 81-101. · Zbl 1484.35363
[251] Tao, Y. and Winkler, M., A critical virus production rate for efficiency of oncolytic virotherapy, Eur. J. Appl. Math.32 (2021) 301-316.
[252] Tao, Y. and Winkler, M., Global smooth solutions in a two-dimensional cross-diffusion system modeling propagation of urban crime, Commun. Math. Sci.19 (2021) 829-849. · Zbl 1479.35120
[253] Tao, Y. and Winkler, M., Blow-up prevention by quadratic degradation in a two-dimensional Keller-Segel-Navier-Stokes system, Z. Angew. Math. Phys.67 (2016) 138. · Zbl 1356.35054
[254] Tao, Y. and Winkler, M., Boundedness and decay enforced by quadratic degradation in a three-dimensional chemotaxis-fluid system, Z. Angew. Math. Phys.66 (2015) 2555-2573. · Zbl 1328.35084
[255] Tao, Y. and Winkler, M., Locally bounded global solutions in a three-dimensional chemotaxis-stokes system with nonlinear diffusion, Ann. Inst. H. Poincaré Anal. Non Linéaire30 (2013) 157-178. · Zbl 1283.35154
[256] Tao, Y. and Winkler, M., Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differential Equations252 (2012) 692-715. · Zbl 1382.35127
[257] Tao, Y. and Winkler, M., Global existence and boundedness in a Keller-Segel-Stokes model with arbitrary porous medium diffusion, Discrete Contin. Dyn. Syst.32 (2012) 1901-1914. · Zbl 1276.35105
[258] Tao, Y. and Winkler, M., Taxis-driven formation of singular hotspots in a May-Nowak type model for virus infection, SIAM J. Math. Anal.53 (2021) 1411-1433. · Zbl 1461.35201
[259] Tao, Y. and Winkler, M., A fully cross-diffusive two-component evolution system: Existence and qualitative analysis via entropy-consistent thin-film-type approximation, J. Funct. Anal.281 (2021) 109069, 51 pp. · Zbl 1471.35278
[260] Y. Tao and M. Winkler, Existence theory and qualitative analysis for a fully cross-diffusive predator-prey system, preprint (2020).
[261] Tello, J. I. and Wrzosek, D., Predator-prey model with diffusion and indirect prey-taxis, Math. Models Methods Appl. Sci.26 (2016) 2129-2162. · Zbl 1349.92133
[262] Tian, Y. and Xiang, Z., Global solutions to a 3D chemotaxis-Stokes system with nonlinear cell diffusion and Robin signal boundary condition, J. Differential Equations269 (2020) 2012-2056. · Zbl 1439.35249
[263] Trucu, D., Lin, P., Chaplain, M. A. J. and Wang, Y., A multiscale moving boundary model arising in cancer invasion, Multiscale Models Simul.11 (2013) 309-335. · Zbl 1302.35379
[264] Tse, W. H. and Ward, M. J., Hotspot formation and dynamics for a continuum model of urban crime, Eur. J. Appl. Math.27 (2016) 583-624. · Zbl 1408.91169
[265] Tsyganov, M. A., Brindley, J., Holden, A. V. and Biktashev, V. N., Quasi-soliton interaction of pursuit-evasion waves in a predator-prey system, Phys. Rev. Lett.91 (2003) 218102.
[266] Turing, A. M., The chemical basis of morphogenesis, Philos. Trans. Royal Soc. B, Biol. Sci.37 (1952) 37-72. · Zbl 1403.92034
[267] Tuval, I., Cisneros, L., Dombrowski, C., Wolgemuth, C. W., Kessler, J. O. and Goldstein, R. E., Bacterial swimming and oxygen transport near contact lines, Proc. Natl. Acad. Sci. USA102 (2005) 2277-2282. · Zbl 1277.35332
[268] Tyutyunov, Y., Titova, L. and Arditi, R., A minimal model of pursuit-evasion in a predator-prey system, Math. Model. Nat. Phenom.2 (2007) 122-134. · Zbl 1337.92201
[269] Verbeni, M., Sanchez, O., Mollica, E., Siegl-Cachedenier, I., Carleton, A., Guerrero, I., Ruiz i Altaba, A. and Soler, J., Morphogenetic action through flux-limited spreading, Phys. Life Rev.10 (2013) 457-475.
[270] Wang, J., Global existence and boundedness of a forager-exploiter system with nonlinear diffusions, J. Differential Equations276 (2021) 460-492. · Zbl 1456.35203
[271] Wang, J. and Wang, M., Global bounded solution of the higher-dimensional forager-exploiter model with/without growth sources, Math. Models Methods Appl. Sci.30 (2020) 1297-1323. · Zbl 1453.35171
[272] Wang, Q., Wang, D. and Feng, Y., Global well-posedness and uniform boundedness of urban crime models: One-dimensional case, J. Differential Equations269 (2020) 6216-6235. · Zbl 1440.35329
[273] Wang, W., Global boundedness of weak solutions for a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and rotation, J. Differential Equations268 (2020) 7047-7091. · Zbl 1439.35044
[274] Wang, Y., Boundedness in a 2D chemotaxis-Stokes system with general sensitivity and nonlinear diffusion, Comput. Math. Appl.76 (2018) 818-830. · Zbl 1426.92008
[275] Wang, Y., Global weak solutions in a three-dimensional Keller-Segel-Navier-Stokes system with subcritical sensitivity, Math. Models Methods Appl. Sci.27 (2017) 2745-2780. · Zbl 1378.92010
[276] Wang, Y., Global solvability and eventual smoothness in a chemotaxis-fluid system with weak logistic-type degradation, Math. Models Methods Appl. Sci.30 (2020) 1217-1252. · Zbl 1451.92065
[277] Wang, Y. and Li, X., Boundedness for a 3D chemotaxis-Stokes system with porous medium diffusion and tensor-valued chemotactic sensitivity, Z. Angew. Math. Phys.68 (2017) 29. · Zbl 1371.35156
[278] Wang, Y., Global large-data generalized solutions in a two-dimensional chemotaxis-Stokes system with singular sensitivity, Bound. Value Probl.2016 (2016) 177. · Zbl 1408.35131
[279] Wang, Y., Global existence and boundedness in a Keller-Segel-Stokes system involving a tensor-valued sensitivity with saturation, J. Differenatial Equations259 (2016) 7578-7609. · Zbl 1323.35071
[280] Wang, Y. and Xiang, Z., Global existence and boundedness in a Keller-Segel-Stokes system involving a tensor-valued sensitivity with saturation: The 3D case, J. Differential Equations261 (2016) 4944-4973. · Zbl 1345.35054
[281] Wang, Y., A review on the qualitative behavior of solutions in some chemotaxis-haptotaxis models of cancer invasion, Mathematics8 (2020) 1464, https://doi.org/10.3390/math8091464.
[282] Wang, Y., Winkler, M. and Xiang, Z., Global classical solutions in a two-dimensional chemotaxis-Navier-Stokes system with subcritical sensitivity, Ann. Scu. Norn. Sup. Pisa Cl. Sci.18 (2018) 421-466. · Zbl 1395.92024
[283] Wang, Y., Winkler, M. and Xiang, Z., Local energy estimates and global solvability in a three-dimensional chemotaxis-fluid system with prescribed signal on the boundary, Comm. Partial Differential Equations46(6) (2021) 1058-1091. · Zbl 1470.92044
[284] Wang, Y., Winkler, M. and Xiang, Z., Global solvability in a three-dimensional Keller-Segel-Stokes system involving arbitrary superlinear logistic degradation, Adv. Nonlin. Anal.10 (2021) 707-731. · Zbl 1466.92020
[285] Weinberg, R. A., The Biology of Cancer, Garland Sciences (Taylor and Francis, 2007).
[286] Wiegner, M., The Navier-Stokes equations — A neverending challenge?Jahresber. Dt. Math. Verein.101 (1999) 1-25. · Zbl 0924.35100
[287] Winkler, M., Does a ‘volume-filling effect’ always prevent chemotactic collapse?Math. Meth. Appl. Sci.33 (2010) 12-24. · Zbl 1182.35220
[288] Winkler, M., Global large-data solutions in a chemotaxis-(Navier-)Stokes system modeling cellular swimming in fluid drops, Comm. Partial Differential Equations37 (2012) 319-351. · Zbl 1236.35192
[289] Winkler, M., Stabilization in a two-dimensional chemotaxis-Navier-Stokes system, Arch. Ration. Mech. Anal.211 (2014) 455-487. · Zbl 1293.35220
[290] Winkler, M., Boundedness and large time behavior in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and general sensitivity, Calc. Var. Partial Differential Equations54 (2015) 3789-3828. · Zbl 1333.35104
[291] Winkler, M., Global weak solutions in a three-dimensional chemotaxis-Navier-Stokes system, Ann. Inst. H. Poincaré — Anal. Non Linéaire33 (2016) 1329-1352. · Zbl 1351.35239
[292] Winkler, M., How far do chemotaxis-driven forces influence regularity in the Navier-Stokes system?Trans. Amer. Math. Soc.369 (2017) 3067-3125. · Zbl 1356.35071
[293] Winkler, M., Does fluid interaction affect regularity in the three-dimensional Keller-Segel system with saturated sensitivity?J. Math. Fluid Mech.20 (2018) 1889-1909. · Zbl 1409.35047
[294] Winkler, M., Global existence and stabilization in a degenerate chemotaxis-Stokes system with mildly strong diffusion enhancement, J. Differential Equations264 (2018) 6109-6151. · Zbl 1395.35038
[295] Winkler, M., Global mass-preserving solutions in a two-dimensional chemotaxis-Stokes system with rotational flux components, J. Evol. Equ.18 (2018) 1267-1289. · Zbl 1404.35464
[296] Winkler, M., Singular structure formation in a degenerate haptotaxis model involving myopic diffusion, J. Math. Pures Appl.112 (2018) 118-169. · Zbl 1391.35065
[297] Winkler, M., Global generalized solutions to a multi-dimensional doubly tactic resource consumption model accounting for social interactions, Math. Models Methods Appl. Sci.29 (2019) 373-418. · Zbl 1428.35612
[298] Winkler, M., A three-dimensional Keller-Segel-Navier-Stokes system with logistic source: Global weak solutions and asymptotic stabilization, J. Funct. Anal.276 (2019) 1339-1401. · Zbl 1408.35132
[299] Winkler, M., Boundedness in a chemotaxis-May-Nowak model for virus dynamics with mildly saturated chemotactic sensitivity, Acta Appl. Math.163 (2019) 1-17. · Zbl 1423.35172
[300] Winkler, M., Global solvability and stabilization in a two-dimensional cross-diffusion system modeling urban crime propagation, Ann. Inst. H. Poincaré Anal. Non Linéaire36 (2019) 1747-1790. · Zbl 1428.35611
[301] M. Winkler, Does Leray’s structure theorem withstand buoyancy-driven chemotaxis-fluid interaction? to appear in J. Eur. Math. Soc.
[302] Winkler, M., Small-mass solutions in the two-dimensional Keller-Segel system coupled to the Navier-Stokes equations, SIAM J. Math. Anal.52 (2020) 2041-2080. · Zbl 1441.35079
[303] Winkler, M., Conditional estimates in three-dimensional chemotaxis-Stokes systems and application to a Keller-Segel-fluid model accounting for gradient-dependent flux limitation, J. Differential Equations281 (2021) 33-57. · Zbl 1460.35358
[304] Winkler, M., Boundedness in a three-dimensional Keller-Segel-Stokes system with subcritical sensitivity, Appl. Math. Lett.112 (2021) 106785. · Zbl 1453.35115
[305] Winkler, M., Can rotational fluxes impede the tendency toward spatial homogeneity in nutrient taxis(-Stokes) systems?Int. Math. Res. Not.2021(11) (2021) 8106-8152. · Zbl 1483.35294
[306] Worley, M. J., Nieman, G. S., Geddes, K. and Heffron, F., Salmonella typhimurium disseminates within its host by manipulating the motility of infected cells, Proc. Natl. Acad. Soc. USA103 (2006) 17915-17920.
[307] Wu, J. and Natal, H., Boundedness and asymptotic behavior to a chemotaxis-fluid system with singular sensitivity and logistic source, J. Math. Anal. Appl.484 (2020) 123748. · Zbl 1437.35093
[308] Wu, S., Wang, J. and Shi, J., Dynamics and pattern formation of a diffusive predator-prey model with predator-taxis, Math. Models Methods Appl. Sci.28 (2018) 2275-2312. · Zbl 1411.35171
[309] Wu, C. and Xiang, Z., Asymptotic dynamics on a chemotaxis-Navier-Stokes system with nonlinear diffusion and inhomogeneous boundary conditions, Math. Models Methods Appl. Sci.30 (2020) 1325-1374. · Zbl 1452.35228
[310] Xu, L., Mu, C. and Xin, Q., Global boundedness of solutions to the two-dimensional forager-exploiter model with logistic source, Discr. Cont. Dyn. Syst.41(7) (2021) 3031-3043. · Zbl 1465.35277
[311] Xue, C. and Othmer, H. G., Multiscale models of taxis-driven patterning in bacterial populations, SIAM J. Appl. Math.70 (2009) 133-167. · Zbl 1184.35308
[312] Yu, P., Global existence and boundedness in a chemotaxis-Stokes system with arbitrary porous medium diffusion, Math. Methods Appl. Sci.43 (2020) 639-657. · Zbl 1439.35254
[313] Yu, H., Wang, W. and Zheng, S., Global classical solutions to the Keller-Segel-Navier-Stokes system with matrix-valued sensitivity, J. Math. Anal. Appl.461 (2018) 1748-1770. · Zbl 1390.35381
[314] Zhang, Q. and Li, Y., Convergence rates of solutions for a two-dimensional chemotaxis-Navier-Stokes system, Discrete Contin. Dyn. Syst. Ser. B20 (2015) 2751-2759. · Zbl 1334.35104
[315] Zhang, Q. and Li, Y., Global weak solutions for the three-dimensional chemotaxis-Navier-Stokes system with nonlinear diffusion, J. Differential Equations259 (2015) 3730-3754. · Zbl 1320.35352
[316] Zheng, J., Global weak solutions in a three-dimensional Keller-Segel-Navier-Stokes system with nonlinear diffusion, J. Differential Equations263 (2017) 2606-2629. · Zbl 1366.35080
[317] Zheng, J., A new result for the global existence (and boundedness) and regularity of a three-dimensional Keller-Segel-Navier-Stokes system modeling coral fertilization, J. Differential Equations272 (2021) 164-202. · Zbl 1455.35273
[318] Zheng, J. and Ke, Y., Blow-up prevention by nonlinear diffusion in a 2D Keller-Segel-Navier-Stokes system with rotational flux, J. Differential Equations268 (2020) 7092-7120. · Zbl 1445.35290
[319] Zheng, P. and Willie, R., Global weak solutions and eventual smoothness in a 3D two-competing-species chemotaxis-Navier-Stokes system with two consumed signals, Math. Methods Appl. Sci.43 (2020) 3773-3785. · Zbl 1446.35030
[320] Zheng, P. and Willie, R., Global boundedness and stabilization in a two-competing-species chemotaxis-fluid system with two chemicals, J. Dyn. Differential Equations32 (2020) 1371-1399. · Zbl 1446.35237
[321] Zhigun, A., Surulescu, C. and Uatay, A., Global existence for a degenerate haptotaxis model of cancer invasion, Z. Angew. Math. Phys.67 (2016) 29 pp. · Zbl 1359.35205
[322] Zhou, S., Boundedness in chemotaxis-Stokes system with rotational flux term, Nonlin. Anal. Real World Appl.45 (2019) 299-308. · Zbl 1411.35017
[323] Zhuang, M., Wang, W. and Zheng, S., Global weak solutions for a 3D chemotaxis-Stokes system with slow \(p\)-Laplacian diffusion and rotation, Nonlin. Anal. Real World Appl.56 (2020) 103163. · Zbl 1453.35172
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.