×

On tiny zero-sum sequences over finite abelian groups. (English) Zbl 1497.11049

Let \((G,+,0)\) be a finite abelian group. A sequence over \(G\) is a finite unordered sequence with terms from \(G\) and repetition allowed. Let \[ S=g_1\cdot g_2\cdot\ldots\cdot g_{\ell} \] be a sequence over \(G\) of length \(\ell\). If \(\ell\ge 1\), \(\sigma(S):=g_1+\ldots+g_{\ell}=0\), and \(\mathsf k(S):=\frac{1}{\operatorname{ord}(g_1)}+\ldots+\frac{1}{\operatorname{ord}(g_{\ell})}\le 1\), then we say \(S\) is a tiny zero-sum sequence.
We denote by \(\mathsf t(G)\) the smallest integer \(t\) such that every sequence of length \(t\) has a tiny zero-sum subsequence. The investigations on \(\mathsf {t}(G)\) originate in a conjecture, addressed by Erdős and Lemke in the late 1980s. Among others, we know that
if \(G\) is cyclic, then \(\mathsf t(G)=|G|\);
if \(G\cong C_{p^{\alpha}}^2\), where \(p\) is a prime and \(\alpha\) is a positive integer, then \(\mathsf t(G)=3p^{\alpha}-2\).
B. Girard [Adv. Math. 231, No. 3–4, 1843–1857 (2012; Zbl 1251.05178)] conjectured that \(\mathsf t(G)=2m+mn-2\) for all groups \(G\cong C_m\oplus C_{mn}\), where \(m,n\) are positive integers.
In this manuscript, the authors confirmed this conjecture for groups \(G\cong C_m\oplus C_m\) such that \(m=p_1^{\alpha_1}\cdot\ldots\cdot p_{s}^{\alpha_s}\) with \(\frac{1}{p_1}+\ldots+\frac{1}{p_{s}}< 1\), where \(p_1,\ldots, p_s\) are distinct primes and \(s, \alpha_1, \ldots, \alpha_s\) are positive integers (see Theorem 1.4).

MSC:

11B50 Sequences (mod \(m\))
11B75 Other combinatorial number theory
11P70 Inverse problems of additive number theory, including sumsets
20K01 Finite abelian groups

Citations:

Zbl 1251.05178
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] N. Alon and M. Dubiner, A lattice point problem and additive number theory, Combinatorica 15 (1995), 301-309. · Zbl 0838.11020
[2] Y. Edel, C. Elsholtz, A. Geroldinger, S. Kubertin and L. Rackham, Zero-sum problems in finite abelian groups and affine caps, Quart. J. Math. 58 (2007), 159-186. · Zbl 1205.11028
[3] S. Elledge and G. H. Hurlbert, An application of graph pebbling to zero-sum sequences in abelian groups, Integers 5 (2005), no. 1, art. A17, 10 pp. · Zbl 1082.11013
[4] C. Elsholtz, Lower bounds for multidimensional zero sums, Combinatorica 24 (3) (2004), 351-358. · Zbl 1064.11018
[5] P. van Emde Boas and D. Kruyswijk, A combinatorial problem on finite abelian groups III, Math. Centrum Amsterdam Afd. Zuivere Wisk. 1969, art. ZW-008, 34 pp. · Zbl 0245.20046
[6] Y. S. Fan, W. D. Gao, J. T. Peng, L. L. Wang and Q. H. Zhong, Remarks on tiny zero-sum sequences, Integers 13 (2013), art. A52, 8 pp. · Zbl 1283.11052
[7] Y. S. Fan, W. D. Gao, L. L. Wang and Q. H. Zhong, Two zero-sum invariants on finite abelian groups, Eur. J. Combin. 34 (2013), 1331-1337. · Zbl 1364.11062
[8] W. D. Gao and A. Geroldinger, Zero-sum problems in finite abelian groups: a survey, Expo. Math. 24 (2006), 337-369. · Zbl 1122.11013
[9] W. D. Gao, Q. H. Hou, W. A. Schmid and R. Thangadurai, On short zero-sum subsequences II, Integers 7 (2007), no. 1, art. A21, 22 pp. · Zbl 1201.11030
[10] A. Geroldinger, On a conjecture of Kleitman and Lemke, J. Number Theory 44 (1993), 60-65. · Zbl 0781.20017
[11] A. Geroldinger and D. J. Grynkiewicz, On the structure of minimal zero-sum sequences with maximal cross number, J. Combin. Number Theory 1 (2009), 109-126. · Zbl 1263.11093
[12] A. Geroldinger and F. Halter-Koch, Non-Unique Factorizations: Algebraic, Combinatorial and Analytic Theory, Pure Appl. Math. (Boca Raton) 278, Chapman & Hall/CRC, 2006. · Zbl 1113.11002
[13] A. Geroldinger and R. Schneider, The cross number of finite abelian groups II, Eur. J. Combin. 15 (1994), 399-405. · Zbl 0833.20061
[14] B. Girard, A new upper bound for the cross number of finite abelian groups, Israel J. Math. 172 (2009), 253-278. · Zbl 1206.20059
[15] B. Girard, On a combinatorial problem of Erdős, Kleitman and Lemke, Adv. Math. 231 (2012), 1843-1857. · Zbl 1251.05178
[16] P. Lemke and D. Kleitman, An addition theorem on the integers modulo n, J. Number Theory 31 (1989), 335-345. · Zbl 0672.10038
[17] W. A. Schmid, Inverse zero-sum problems II, Acta Arith. 143 (2010), 333-334. · Zbl 1219.11151
[18] W. A. Schmid, Restricted inverse zero-sum problems in groups of rank 2, Quart. J. Math. 63 (2012), 477-487. · Zbl 1252.20026
[19] L. L. Wang, Tiny zero-sum sequences over some special groups, Open Math. 18 (2020), 820-828. · Zbl 1475.05165
[20] Weidong Gao, Wanzhen Hui (corresponding author), Qiuyu Yin Center for Combinatorics LPMC-TJKLC Nankai University Tianjin 300071, P.R. China E-mail: wdgao@nankai.edu.cn weidong.gao@tju.edu.cn huiwanzhen@163.com yinqiuyu26@126.com
[21] Xiaoer Qin School of Mathematics and Statistics Yangtze Normal University Chongqing 408100, P.R. China E-mail: qincn328@sina.com Xue Li College of Science Tianjin University of Commerce Tianjin 300134, P.R. China E-mail: lixue931006@163.com
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.