×

Uniform error bounds of time-splitting spectral methods for the long-time dynamics of the nonlinear Klein-Gordon equation with weak nonlinearity. (English) Zbl 07473345

Summary: We establish uniform error bounds of time-splitting Fourier pseudospectral (TSFP) methods for the nonlinear Klein-Gordon equation (NKGE) with weak power-type nonlinearity and \(O(1)\) initial data, while the nonlinearity strength is characterized by \(\varepsilon^p\) with a constant \(p\in\mathbb{N}^+\) and a dimensionless parameter \(\varepsilon\in (0, 1]\), for the long-time dynamics up to the time at \(O(\varepsilon^{-\beta})\) with \(0\leq\beta\leq p\). In fact, when \(0 < \varepsilon\ll 1\), the problem is equivalent to the long-time dynamics of NKGE with small initial data and \(O(1)\) nonlinearity strength, while the amplitude of the initial data (and the solution) is at \(O(\varepsilon)\). By reformulating the NKGE into a relativistic nonlinear Schrödinger equation, we adapt the TSFP method to discretize it numerically. By using the method of mathematical induction to bound the numerical solution, we prove uniform error bounds at \(O(h^m+\varepsilon^{p-\beta}\tau^2)\) of the TSFP method with \(h\) mesh size, \(\tau\) time step and \(m\ge 2\) depending on the regularity of the solution. The error bounds are uniformly accurate for the long-time simulation up to the time at \(O(\varepsilon^{-\beta})\) and uniformly valid for \(\varepsilon\in (0,1]\). Especially, the error bounds are uniformly at the second-order rate for the large time step \(\tau=O(\varepsilon^{-(p-\beta)/2})\) in the parameter regime \(0\le\beta <p\). Numerical results are reported to confirm our error bounds in the long-time regime. Finally, the TSFP method and its error bounds are extended to a highly oscillatory complex NKGE which propagates waves with wavelength at \(O(1)\) in space and \(O(\varepsilon^{\beta})\) in time and wave velocity at \(O(\varepsilon^{-\beta})\).

MSC:

65-XX Numerical analysis
35L70 Second-order nonlinear hyperbolic equations
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
81-08 Computational methods for problems pertaining to quantum theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Bao, Weizhu; Cai, Yongyong, Mathematical theory and numerical methods for Bose-Einstein condensation, Kinet. Relat. Models, 6, 1, 1-135 (2013) · Zbl 1266.82009
[2] Bao, Weizhu; Cai, Yongyong; Jia, Xiaowei; Tang, Qinglin, Numerical methods and comparison for the Dirac equation in the nonrelativistic limit regime, J. Sci. Comput., 71, 3, 1094-1134 (2017) · Zbl 1370.81053
[3] Bao, WeiZhu; Cai, YongYong; Jia, XiaoWei; Yin, Jia, Error estimates of numerical methods for the nonlinear Dirac equation in the nonrelativistic limit regime, Sci. China Math., 59, 8, 1461-1494 (2016) · Zbl 1365.65208
[4] Bao, Weizhu; Cai, Yongyong; Zhao, Xiaofei, A uniformly accurate multiscale time integrator pseudospectral method for the Klein-Gordon equation in the nonrelativistic limit regime, SIAM J. Numer. Anal., 52, 5, 2488-2511 (2014) · Zbl 1310.65131
[5] Bao, Weizhu; Dong, Xuanchun, Analysis and comparison of numerical methods for the Klein-Gordon equation in the nonrelativistic limit regime, Numer. Math., 120, 2, 189-229 (2012) · Zbl 1248.65087
[6] Bao, Weizhu; Feng, Yue; Yi, Wenfan, Long time error analysis of finite difference time domain methods for the nonlinear Klein-Gordon equation with weak nonlinearity, Commun. Comput. Phys., 26, 5, 1307-1334 (2019) · Zbl 1518.65082
[7] Bao, Weizhu; Jin, Shi; Markowich, Peter A., Numerical study of time-splitting spectral discretizations of nonlinear Schr\"{o}dinger equations in the semiclassical regimes, SIAM J. Sci. Comput., 25, 1, 27-64 (2003) · Zbl 1038.65099
[8] Bao, Weizhu; Shen, Jie, A fourth-order time-splitting Laguerre-Hermite pseudospectral method for Bose-Einstein condensates, SIAM J. Sci. Comput., 26, 6, 2010-2028 (2005) · Zbl 1084.35083
[9] Bao, Weizhu; Su, Chunmei, A uniformly and optimally accurate method for the Zakharov system in the subsonic limit regime, SIAM J. Sci. Comput., 40, 2, A929-A953 (2018) · Zbl 1390.35317
[10] Bao, Weizhu; Zhao, Xiaofei, Comparison of numerical methods for the nonlinear Klein-Gordon equation in the nonrelativistic limit regime, J. Comput. Phys., 398, 108886, 30 pp. (2019) · Zbl 1453.65278
[11] Baumstark, Simon; Faou, Erwan; Schratz, Katharina, Uniformly accurate exponential-type integrators for Klein-Gordon equations with asymptotic convergence to the classical NLS splitting, Math. Comp., 87, 311, 1227-1254 (2018) · Zbl 1384.65088
[12] Bechouche, Philippe; Mauser, Norbert J.; Selberg, Sigmund, Nonrelativistic limit of Klein-Gordon-Maxwell to Schr\"{o}dinger-Poisson, Amer. J. Math., 126, 1, 31-64 (2004) · Zbl 1050.35106
[13] Bernier, Joackim; Faou, Erwan; Gr\'{e}bert, Beno\^{\i }t, Long time behavior of the solutions of NLW on the \(d\)-dimensional torus, Forum Math. Sigma, 8, Paper No. e12, 26 pp. (2020) · Zbl 1441.35169
[14] Bourgain, J., Construction of approximative and almost periodic solutions of perturbed linear Schr\"{o}dinger and wave equations, Geom. Funct. Anal., 6, 2, 201-230 (1996) · Zbl 0872.35007
[15] Brenner, Philip; von Wahl, Wolf, Global classical solutions of nonlinear wave equations, Math. Z., 176, 1, 87-121 (1981) · Zbl 0457.35059
[16] Carles, R\'{e}mi; Gallo, Cl\'{e}ment, On Fourier time-splitting methods for nonlinear Schr\"{o}dinger equations in the semi-classical limit II. Analytic regularity, Numer. Math., 136, 1, 315-342 (2017) · Zbl 1368.65198
[17] Cazenave, Thierry; Naumkin, Ivan, Local smooth solutions of the nonlinear Klein-Gordon equation, Discrete Contin. Dyn. Syst. Ser. S, 14, 5, 1649-1672 (2021) · Zbl 1479.35570
[18] Chartier, Philippe; Crouseilles, Nicolas; Lemou, Mohammed; M\'{e}hats, Florian, Uniformly accurate numerical schemes for highly oscillatory Klein-Gordon and nonlinear Schr\"{o}dinger equations, Numer. Math., 129, 2, 211-250 (2015) · Zbl 1329.35277
[19] Chartier, Philippe; M\'{e}hats, Florian; Thalhammer, Mechthild; Zhang, Yong, Improved error estimates for splitting methods applied to highly-oscillatory nonlinear Schr\"{o}dinger equations, Math. Comp., 85, 302, 2863-2885 (2016) · Zbl 1344.35131
[20] Chikwendu, S. C.; Easwaran, C. V., Multiple-scale solution of initial-boundary value problems for weakly nonlinear wave equations on the semi-infinite line, SIAM J. Appl. Math., 52, 4, 946-958 (1992) · Zbl 0756.35016
[21] Cohen, David; Hairer, Ernst; Lubich, Christian, Conservation of energy, momentum and actions in numerical discretizations of non-linear wave equations, Numer. Math., 110, 2, 113-143 (2008) · Zbl 1163.65066
[22] Cohen, David; Hairer, Ernst; Lubich, Christian, Long-time analysis of nonlinearly perturbed wave equations via modulated Fourier expansions, Arch. Ration. Mech. Anal., 187, 2, 341-368 (2008) · Zbl 1145.35087
[23] Delort, J.-M., Temps d’existence pour l’\'{e}quation de Klein-Gordon semi-lin\'{e}aire \`a donn\'{e}es petites p\'{e}riodiques, Amer. J. Math., 120, 3, 663-689 (1998) · Zbl 0902.35108
[24] Delort, J.-M., On long time existence for small solutions of semi-linear Klein-Gordon equations on the torus, J. Anal. Math., 107, 161-194 (2009) · Zbl 1184.35211
[25] Delort, J.-M.; Szeftel, J., Long-time existence for small data nonlinear Klein-Gordon equations on tori and spheres, Int. Math. Res. Not., 37, 1897-1966 (2004) · Zbl 1079.35070
[26] Dong, Xuanchun; Xu, Zhiguo; Zhao, Xiaofei, On time-splitting pseudospectral discretization for nonlinear Klein-Gordon equation in nonrelativistic limit regime, Commun. Comput. Phys., 16, 2, 440-466 (2014) · Zbl 1388.65118
[27] Duncan, D. B., Symplectic finite difference approximations of the nonlinear Klein-Gordon equation, SIAM J. Numer. Anal., 34, 5, 1742-1760 (1997) · Zbl 0889.65093
[28] FS2018 M. Faccioli and L. Salasnich, Spontaneous symmetry breaking and Higgs mode: comparing Gross-Pitaevskii and nonlinear Klein-Gordon equations, Symmetry, 10 (2018), no. 4, 80. · Zbl 1423.82040
[29] Fang, Daoyuan; Zhang, Qidi, Long-time existence for semi-linear Klein-Gordon equations on tori, J. Differential Equations, 249, 1, 151-179 (2010) · Zbl 1200.35189
[30] Faou, Erwan; Schratz, Katharina, Asymptotic preserving schemes for the Klein-Gordon equation in the non-relativistic limit regime, Numer. Math., 126, 3, 441-469 (2014) · Zbl 1314.65131
[31] Feng, Yue, Long time error analysis of the fourth-order compact finite difference methods for the nonlinear Klein-Gordon equation with weak nonlinearity, Numer. Methods Partial Differential Equations, 37, 1, 897-914 (2021)
[32] Feng, Yue; Yi, Wenfan, Uniform error bounds of an exponential wave integrator for the long-time dynamics of the nonlinear Klein-Gordon equation, Multiscale Model. Simul., 19, 3, 1212-1235 (2021) · Zbl 1496.65178
[33] Feshbach, Herman; Villars, Felix, Elementary relativistic wave mechanics of spin \(0\) and spin \(1/2\) particles, Rev. Mod. Phys., 30, 24-45 (1958) · Zbl 0082.21905
[34] Ginibre, J.; Velo, G., The global Cauchy problem for the nonlinear Klein-Gordon equation, Math. Z., 189, 4, 487-505 (1985) · Zbl 0549.35108
[35] Hairer, E.; Lubich, C., Spectral semi-discretisations of weakly non-linear wave equations over long times, Found. Comput. Math., 8, 3, 319-334 (2008) · Zbl 1156.35007
[36] Huang, Zhongyi; Jin, Shi; Markowich, Peter A.; Sparber, Christof; Zheng, Chunxiong, A time-splitting spectral scheme for the Maxwell-Dirac system, J. Comput. Phys., 208, 2, 761-789 (2005) · Zbl 1070.81040
[37] Keel, Markus; Tao, Terence, Small data blow-up for semilinear Klein-Gordon equations, Amer. J. Math., 121, 3, 629-669 (1999) · Zbl 0931.35105
[38] Klainerman, Sergiu, Global existence of small amplitude solutions to nonlinear Klein-Gordon equations in four space-time dimensions, Comm. Pure Appl. Math., 38, 5, 631-641 (1985) · Zbl 0597.35100
[39] KSV V. V. Konotop, A. S\`anchez, and L. V\`azquez, Kink dynamics in the weakly stochastic \(\varphi^4\) model, Phys. Rev. B 44 (1991), no. 6, 2554-2566.
[40] Landa, P. S., Nonlinear oscillations and waves in dynamical systems, Mathematics and its Applications 360, xvi+538 pp. (1996), Kluwer Academic Publishers Group, Dordrecht · Zbl 0873.34003
[41] Landau, H. J., Necessary density conditions for sampling and interpolation of certain entire functions, Acta Math., 117, 37-52 (1967) · Zbl 0154.15301
[42] Li, Kaitai; Zhang, Quande, Existence and nonexistence of global solutions for the equation of dislocation of crystals, J. Differential Equations, 146, 1, 5-21 (1998) · Zbl 0926.35073
[43] Lindblad, Hans, On the lifespan of solutions of nonlinear wave equations with small initial data, Comm. Pure Appl. Math., 43, 4, 445-472 (1990) · Zbl 0719.35005
[44] Lubich, Christian, On splitting methods for Schr\"{o}dinger-Poisson and cubic nonlinear Schr\"{o}dinger equations, Math. Comp., 77, 264, 2141-2153 (2008) · Zbl 1198.65186
[45] Masaki, Satoshi; Segata, Jun-ichi, Modified scattering for the quadratic nonlinear Klein-Gordon equation in two dimensions, Trans. Amer. Math. Soc., 370, 11, 8155-8170 (2018) · Zbl 1404.35299
[46] Masmoudi, Nader; Nakanishi, Kenji, From nonlinear Klein-Gordon equation to a system of coupled nonlinear Schr\"{o}dinger equations, Math. Ann., 324, 2, 359-389 (2002) · Zbl 1008.35071
[47] McLachlan, Robert I.; Quispel, G. Reinout W., Splitting methods, Acta Numer., 11, 341-434 (2002) · Zbl 1105.65341
[48] Morawetz, Cathleen S.; Strauss, Walter A., Decay and scattering of solutions of a nonlinear relativistic wave equation, Comm. Pure Appl. Math., 25, 1-31 (1972) · Zbl 0228.35055
[49] Nakanishi, Kenji, Energy scattering for nonlinear Klein-Gordon and Schr\"{o}dinger equations in spatial dimensions \(1\) and \(2\), J. Funct. Anal., 169, 1, 201-225 (1999) · Zbl 0942.35159
[50] Ono, Kosuke, Global existence and asymptotic behavior of small solutions for semilinear dissipative wave equations, Discrete Contin. Dyn. Syst., 9, 3, 651-662 (2003) · Zbl 1029.35180
[51] Ozawa, Tohru; Tsutaya, Kimitoshi; Tsutsumi, Yoshio, Global existence and asymptotic behavior of solutions for the Klein-Gordon equations with quadratic nonlinearity in two space dimensions, Math. Z., 222, 3, 341-362 (1996) · Zbl 0877.35030
[52] SJJ J. J. Sakurai, Advanced quantum mechanics, Addison-Wesley, New York, 1967. · Zbl 0158.45604
[53] Schoene, Andrew Y., On the nonrelativistic limits of the Klein-Gordon and Dirac equations, J. Math. Anal. Appl., 71, 1, 36-47 (1979) · Zbl 0427.35063
[54] Shannon, C. E., A mathematical theory of communication, Bell System Tech. J., 27, 379-423, 623-656 (1948) · Zbl 1154.94303
[55] Shen, Jie; Tang, Tao, Spectral and high-order methods with applications, Mathematics Monograph Series 3, iv+326 pp. (2006), Science Press Beijing, Beijing · Zbl 1234.65005
[56] Shen, Jie; Wang, Zhong-Qing, Error analysis of the Strang time-splitting Laguerre-Hermite/Hermite collocation methods for the Gross-Pitaevskii equation, Found. Comput. Math., 13, 1, 99-137 (2013) · Zbl 1264.65168
[57] Strauss, Walter; Vazquez, Luis, Numerical solution of a nonlinear Klein-Gordon equation, J. Comput. Phys., 28, 2, 271-278 (1978) · Zbl 0387.65076
[58] Su, Chunmei; Zhao, Xiaofei, On time-splitting methods for nonlinear Schr\"{o}dinger equation with highly oscillatory potential, ESAIM Math. Model. Numer. Anal., 54, 5, 1491-1508 (2020) · Zbl 1451.65163
[59] von Wahl, Wolf, Regular solutions of initial-boundary value problems for linear and nonlinear wave-equations. II, Math. Z., 142, 121-130 (1975) · Zbl 0301.35063
[60] Wazwaz, Abdul-Majid, The tanh and the sine-cosine methods for compact and noncompact solutions of the nonlinear Klein-Gordon equation, Appl. Math. Comput., 167, 2, 1179-1195 (2005) · Zbl 1082.65584
[61] Yi, Wenfan; Ruan, Xinran; Su, Chunmei, Optimal resolution methods for the Klein-Gordon-Dirac system in the nonrelativistic limit regime, J. Sci. Comput., 79, 3, 1907-1935 (2019) · Zbl 1418.35338
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.