×

On a system of Riemann-Liouville fractional differential equations with coupled nonlocal boundary conditions. (English) Zbl 1494.34040


MSC:

34A08 Fractional ordinary differential equations
26A33 Fractional derivatives and integrals
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Agarwal, R. P.; Luca, R., Positive solutions for a semipositone singular Riemann-Liouville fractional differential problem, Int. J. Nonlinear Sci. Numer. Simul., 20, 7-8, 823-832 (2019) · Zbl 07168392 · doi:10.1515/ijnsns-2018-0376
[2] Ahmad, B.; Luca, R., Existence of solutions for a sequential fractional integro-differential system with coupled integral boundary conditions, Chaos Solitons Fractals, 104, 378-388 (2017) · Zbl 1380.34118 · doi:10.1016/j.chaos.2017.08.035
[3] Ahmad, B.; Luca, R., Existence of solutions for a system of fractional differential equations with coupled nonlocal boundary conditions, Fract. Calc. Appl. Anal., 21, 2, 423-441 (2018) · Zbl 1401.34006 · doi:10.1515/fca-2018-0024
[4] Ahmad, B.; Luca, R., Existence of solutions for sequential fractional integro-differential equations and inclusions with nonlocal boundary conditions, Appl. Math. Comput., 339, 516-534 (2018) · Zbl 1428.34007
[5] Ahmad, B.; Ntouyas, S. K., Existence results for a coupled system of Caputo type sequential fractional differential equations with nonlocal integral boundary conditions, Appl. Math. Comput., 266, 615-622 (2015) · Zbl 1410.34008
[6] Aljoudi, S.; Ahmad, B.; Nieto, J. J.; Alsaedi, A., A coupled system of Hadamard type sequential fractional differential equations with coupled strip conditions, Chaos Solitons Fractals, 91, 39-46 (2016) · Zbl 1372.34006 · doi:10.1016/j.chaos.2016.05.005
[7] Arafa, A. A.M.; Rida, S. Z.; Khalil, M., Fractional modeling dynamics of HIV and CD4^+ T-cells during primary infection, Nonlinear Biomed. Phys., 6, 1, 1-7 (2012) · doi:10.1186/1753-4631-6-1
[8] Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J. J., Fractional Calculus Models and Numerical Methods. Series on Complexity, Nonlinearity and Chaos (2012), Boston: World Scientific, Boston · Zbl 1248.26011 · doi:10.1142/8180
[9] Cole, K., Electric conductance of biological systems, Proc. Cold Spring Harbor Symp. Quant. Biol., 107-116 (1993), New York: Springer, New York
[10] Das, S., Functional Fractional Calculus for System Identification and Controls (2008), New York: Springer, New York · Zbl 1154.26007
[11] Ding, Y.; Ye, H., A fractional-order differential equation model of HIV infection of CD4^+ T-cells, Math. Comput. Model., 50, 386-392 (2009) · Zbl 1185.34005 · doi:10.1016/j.mcm.2009.04.019
[12] Djordjevic, V.; Jaric, J.; Fabry, B.; Fredberg, J.; Stamenovic, D., Fractional derivatives embody essential features of cell rheological behavior, Ann. Biomed. Eng., 31, 692-699 (2003) · doi:10.1114/1.1574026
[13] Ge, Z. M.; Ou, C. Y., Chaos synchronization of fractional order modified Duffing systems with parameters excited by a chaotic signal, Chaos Solitons Fractals, 35, 705-717 (2008) · doi:10.1016/j.chaos.2006.05.101
[14] Guo, L.; Liu, L.; Wu, Y., Iterative unique positive solutions for singular p-Laplacian fractional differential equation system with several parameters, Nonlinear Anal., Model. Control, 23, 2, 182-203 (2018) · Zbl 1420.34016 · doi:10.15388/NA.2018.2.3
[15] Henderson, J.; Luca, R., Boundary Value Problems for Systems of Differential, Difference and Fractional Equations. Positive Solutions (2016), Amsterdam: Elsevier, Amsterdam · Zbl 1353.34002
[16] Henderson, J.; Luca, R., Existence of positive solutions for a singular fractional boundary value problem, Nonlinear Anal., Model. Control, 22, 1, 99-114 (2017) · Zbl 1420.34017 · doi:10.15388/NA.2017.1.7
[17] Henderson, J.; Luca, R., Systems of Riemann-Liouville fractional equations with multi-point boundary conditions, Appl. Math. Comput., 309, 303-323 (2017) · Zbl 1411.34014
[18] Henderson, J.; Luca, R.; Tudorache, A., On a system of fractional differential equations with coupled integral boundary conditions, Fract. Calc. Appl. Anal., 18, 2, 361-386 (2015) · Zbl 1315.34012 · doi:10.1515/fca-2015-0024
[19] Henderson, J.; Luca, R.; Tudorache, A., Existence and nonexistence of positive solutions for coupled Riemann-Liouville fractional boundary value problems, Discrete Dyn. Nat. Soc., 2016 (2016) · Zbl 1417.34064 · doi:10.1155/2016/2823971
[20] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations (2006), Amsterdam: Elsevier, Amsterdam · Zbl 1092.45003 · doi:10.1016/S0304-0208(06)80001-0
[21] Klafter, J.; Lim, S. C.; Metzler, R., Fractional Dynamics in Physics (2011), Singapore: World Scientific, Singapore
[22] Krasnosel’skii, M. A., Two remarks on the method of successive approximations, Usp. Mat. Nauk, 10, 123-127 (1955) · Zbl 0064.12002
[23] Liu, L.; Li, H.; Liu, C.; Wu, Y., Existence and uniqueness of positive solutions for singular fractional differential systems with coupled integral boundary value problems, J. Nonlinear Sci. Appl., 10, 243-262 (2017) · Zbl 1412.34099 · doi:10.22436/jnsa.010.01.24
[24] Liu, S.; Liu, J.; Dai, Q.; Li, H., Uniqueness results for nonlinear fractional differential equations with infinite-point integral boundary conditions, J. Nonlinear Sci. Appl., 10, 1281-1288 (2017) · Zbl 1415.34019 · doi:10.22436/jnsa.010.03.37
[25] Luca, R., Positive solutions for a system of Riemann-Liouville fractional differential equations with multi-point fractional boundary conditions, Bound. Value Probl., 2017 (2017) · Zbl 1372.34016 · doi:10.1186/s13661-017-0833-6
[26] Luca, R.; Tudorache, A., Positive solutions to a system of semipositone fractional boundary value problems, Adv. Differ. Equ., 2014 (2014) · Zbl 1417.34017 · doi:10.1186/1687-1847-2014-179
[27] Metzler, R.; Klafter, J., The random walks guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 339, 1-77 (2000) · Zbl 0984.82032 · doi:10.1016/S0370-1573(00)00070-3
[28] Ostoja-Starzewski, M., Towards thermoelasticity of fractal media, J. Therm. Stresses, 30, 889-896 (2007) · doi:10.1080/01495730701495618
[29] Podlubny, I., Fractional Differential Equations (1999), San Diego: Academic Press, San Diego · Zbl 0924.34008
[30] Pu, R.; Zhang, X.; Cui, Y.; Li, P.; Wang, W., Positive solutions for singular semipositone fractional differential equation subject to multipoint boundary conditions, J. Funct. Spaces, 2017 (2017) · Zbl 1410.34030
[31] Sabatier, J.; Agrawal, O. P.; Machado, J. A.T., Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering (2007), Dordrecht: Springer, Dordrecht · Zbl 1116.00014
[32] Samko, S. G.; Kilbas, A. A.; Marichev, O. I., Fractional Integrals and Derivatives. Theory and Applications (1993), Yverdon: Gordon & Breach, Yverdon · Zbl 0818.26003
[33] Sokolov, I. M.; Klafter, J.; Blumen, A., A fractional kinetics, Phys. Today, 55, 48-54 (2002) · doi:10.1063/1.1535007
[34] Tudorache, A.; Luca, R., Positive solutions for a system of Riemann-Liouville fractional boundary value problems with p-Laplacian operators, Adv. Differ. Equ., 2020 (2020) · Zbl 1485.34054 · doi:10.1186/s13662-020-02750-6
[35] Xu, J.; Wei, Z., Positive solutions for a class of fractional boundary value problems, Nonlinear Anal., Model. Control, 21, 1-17 (2016) · Zbl 1420.34029
[36] Zhang, X., Positive solutions for a class of singular fractional differential equation with infinite-point boundary conditions, Appl. Math. Lett., 39, 22-27 (2015) · Zbl 1387.34014 · doi:10.1016/j.aml.2014.08.008
[37] Zhang, X.; Zhong, Q., Triple positive solutions for nonlocal fractional differential equations with singularities both on time and space variables, Appl. Math. Lett., 80, 12-19 (2018) · Zbl 1391.34021 · doi:10.1016/j.aml.2017.12.022
[38] Zhou, Y., Basic Theory of Fractional Differential Equations (2014), Singapore: World Scientific, Singapore · Zbl 1336.34001 · doi:10.1142/9069
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.