Plaugher, Daniel; Murrugarra, David Phenotype control techniques for Boolean gene regulatory networks. (English) Zbl 07742019 Bull. Math. Biol. 85, No. 10, Paper No. 89, 36 p. (2023). Summary: Modeling cell signal transduction pathways via Boolean networks (BNs) has become an established method for analyzing intracellular communications over the last few decades. What’s more, BNs provide a course-grained approach, not only to understanding molecular communications, but also for targeting pathway components that alter the long-term outcomes of the system. This has come to be known as phenotype control theory. In this review we study the interplay of various approaches for controlling gene regulatory networks such as: algebraic methods, control kernel, feedback vertex set, and stable motifs. The study will also include comparative discussion between the methods, using an established cancer model of T-cell large granular lymphocyte leukemia. Further, we explore possible options for making the control search more efficient using reduction and modularity. Finally, we will include challenges presented such as the complexity and the availability of software for implementing each of these control techniques. MSC: 92C40 Biochemistry, molecular biology 92C42 Systems biology, networks 92C32 Pathology, pathophysiology 92-02 Research exposition (monographs, survey articles) pertaining to biology Keywords:discrete dynamical systems; network dynamics; regulatory networks; phenotype control theory; Boolean networks Software:Macaulay2; ADAM PDF BibTeX XML Cite \textit{D. Plaugher} and \textit{D. Murrugarra}, Bull. Math. Biol. 85, No. 10, Paper No. 89, 36 p. (2023; Zbl 07742019) Full Text: DOI References: [1] Aguilar, B.; Gibbs, DL; Reiss, DJ; McConnell, M.; Danziger, SA; Dervan, A.; Trotter, M.; Bassett, D.; Hershberg, R.; Ratushny, AV; Shmulevich, I., A generalizable data-driven multicellular model of pancreatic ductal adenocarcinoma, Gigascience, 9, 7, 07 (2020) [2] Aguilar, B.; Fang, P.; Laubenbacher, R.; Murrugarra, D., A near-optimal control method for stochastic Boolean networks, Lett Biomath, 7, 1, 67 (2020) [3] Akutsu, T.; Hayashida, M.; Ching, W-K; Michael, KN, Control of Boolean networks: hardness results and algorithms for tree structured networks, J Theor Biol, 244, 4, 670-679 (2007) · Zbl 1450.92040 [4] Arkin, A.; Ross, J.; McAdams, HH, Stochastic kinetic analysis of developmental pathway bifurcation in phage \(\lambda \)-infected Escherichia coli cells, Genetics, 149, 4, 1633-1648 (1998) [5] Baker, RE; Pena, J-M; Jayamohan, J.; Jérusalem, A., Mechanistic models versus machine learning, a fight worth fighting for the biological community?, Biol Lett, 14, 5, 20170660 (2018) [6] Bender EA, Williamson SG (2010) Lists, decisions and graphs. S. Gill Williamson [7] Bertsekas, D., Reinforcement learning and optimal control (2019), Nashua: Athena Scientific, Nashua [8] Borriello E, Daniels BC (2021) The basis of easy controllability in Boolean networks. Nat Commun 12(1) [9] Cheng, D.; Qi, H.; Li, Z.; Liu, JB, Stability and stabilization of Boolean networks, Int J Robust Nonlinear Control, 21, 2, 134-156 (2011) · Zbl 1213.93121 [10] Choo, S-M; Ban, B.; Joo, JI; Cho, K-H, The phenotype control kernel of a biomolecular regulatory network, BMC Syst Biol, 12, 1, 49 (2018) [11] Cifuentes-Fontanals L, Tonello E, Siebert H (2022) Control in Boolean networks with model checking. Front Appl Math Stat 8 · Zbl 1506.92029 [12] Cifuentes-Fontanals L, Tonello E, Siebert H (2022) Node and edge control strategy identification via trap spaces in Boolean networks · Zbl 1506.92029 [13] Creative Proteomics (2018) Brief introduction of post-translational modifications (PTMS). Creative Proteomics Blog [14] Didier, G.; Remy, E.; Chaouiya, C., Mapping multivalued onto Boolean dynamics, J Theor Biol, 270, 1, 177-184 (2011) · Zbl 1331.92051 [15] Erkan, M.; Reiser-Erkan, C.; Michalski, C.; Kleeff, J., Tumor microenvironment and progression of pancreatic cancer, Exp Oncol, 32, 128-31 (2010) [16] Farrow, B.; Albo, D.; Berger, DH, The role of the tumor microenvironment in the progression of pancreatic cancer, J Surg Res, 149, 2, 319-328 (2008) [17] Feig, C.; Gopinathan, A.; Neesse, A.; Chan, DS; Cook, N.; Tuveson, DA, The pancreas cancer microenvironment, Clin Cancer Res, 18, 16, 4266-4276 (2012) [18] Festa P, Pardalos P, Resende M (1999) Feedback set problems. Encyclopedia of optimization 2 · Zbl 1253.90193 [19] Fiedler, B.; Mochizuki, A.; Kurosawa, G.; Saito, D., Dynamics and control at feedback vertex sets. I: informative and determining nodes in regulatory networks, J Dyn Differ Equ, 25, 3, 563-604 (2013) · Zbl 1337.92074 [20] Galinier, P.; Lemamou, E.; Bouzidi, M., Applying local search to the feedback vertex set problem, J Heuristics, 19, 10 (2013) [21] Gong, C.; Milberg, O.; Wang, B.; Vicini, P.; Narwal, R.; Roskos, L.; Popel, AS, A computational multiscale agent-based model for simulating spatio-temporal tumour immune response to pd1 and pdl1 inhibition, J R Soc Interface, 14, 134, 20170320 (2017) [22] Gore, J.; Korc, M., Pancreatic cancer stroma: friend or foe?, Cancer Cell, 25, 711-712 (2014) [23] Grayson DR, Stillman ME (2002) Macaulay2, a software system for research in algebraic geometry. http://www.math.uiuc.edu/Macaulay2/ [24] Heinz, S.; Urszula, L., Optimal control for mathematical models of cancer therapies: an application of geometric methods (2016), New York: Springer, New York · Zbl 1331.92008 [25] Hinkelmann, F.; Brandon, M.; Guang, B.; McNeill, R.; Blekherman, G.; Veliz-Cuba, A.; Laubenbacher, R., ADAM: analysis of discrete models of biological systems using computer algebra, BMC Bioinform, 12, 295 (2011) [26] Johnson K, Plaugher D, Murrugarra D (2023) Investigating the effect of changes in model parameters on optimal control policies, time to absorption, and mixing times [27] Kadelka C, Laubenbacher R, Murrugarra D, Veliz-Cuba A, Matthew W (2022) Decomposition of Boolean networks: an approach to modularity of biological systems [28] Kauffman, SA, Metabolic stability and epigenesis in randomly constructed genetic nets, J Theor Biol, 22, 3, 437-467 (1969) [29] Kleeff, J.; Beckhove, P.; Esposito, I.; Herzig, S.; Huber, PE; Matthias Löhr, J.; Friess, H., Pancreatic cancer microenvironment, Int J Cancer, 121, 4, 699-705 (2007) [30] Lenhart, S.; Workman, JT, Optimal control applied to biological models (2007), Boca Raton: Chapman Hall/CRC, Boca Raton · Zbl 1291.92010 [31] Loughran TP (2006) Large granular lymphocytic leukemia. Leukemia and Lymphoma Society [32] Macklin, P., Key challenges facing data-driven multicellular systems biology, Gigascience, 8, 10, giz127 (2019) [33] Mochizuki, A.; Fiedler, B.; Kurosawa, G.; Saito, D., Dynamics and control at feedback vertex sets. II: a faithful monitor to determine the diversity of molecular activities in regulatory networks, J Theor Biol, 335, 130-146 (2013) · Zbl 1397.92256 [34] Moore, H., How to mathematically optimize drug regimens using optimal control, J Pharmacokinet Pharmacodyn, 45, 1, 127-137 (2018) [35] Motter, AE, Networkcontrology, Chaos Interdiscip J Nonlinear Sci, 25, 9, 097621 (2015) · Zbl 06808836 [36] Murrugarra, D.; Aguilar, B., Algebraic and combinatorial computational biology, chapter 5, 149-150 (2018), New York: Academic Press, New York [37] Murrugarra, D.; Dimitrova, ES, Molecular network control through Boolean canalization, EURASIP J Bioinform Syst Biol, 2015, 1, 9 (2015) [38] Murrugarra, D.; Dimitrova, E., Quantifying the total effect of edge interventions in discrete multistate networks, Automatica, 125 (2021) · Zbl 1461.93187 [39] Murrugarra, D.; Veliz-Cuba, A.; Aguilar, B.; Arat, S.; Laubenbacher, R., Modeling stochasticity and variability in gene regulatory networks, EURASIP J Bioinf Syst Biol, 2012, 1, 5 (2012) [40] Murrugarra, D.; Veliz-Cuba, A.; Aguilar, B.; Laubenbacher, R., Identification of control targets in Boolean molecular network models via computational algebra, BMC Syst Biol, 10, 1, 94 (2016) [41] Murrugarra, D.; Miller, J.; Mueller, AN, Estimating propensity parameters using google PageRank and genetic algorithms, Front Neurosci, 10, 513 (2016) [42] Padoan, A.; Plebani, M.; Basso, D., Inflammation and pancreatic cancer: focus on metabolism, cytokines, and immunity, Int J Mol Sci, 20, 676 (2019) [43] Plaugher D (2022) An integrated computational pipeline to construct patient-specific cancer models [44] Plaugher, D.; Aguilar, B.; Murrugarra, D., Uncovering potential interventions for pancreatic cancer patients via mathematical modeling, J Theor Biol, 548 (2022) · Zbl 1493.92028 [45] Plaugher D, Murrugarra D (2021) Modeling the pancreatic cancer microenvironment in search of control targets. Bull Math Biol 83 · Zbl 1475.92052 [46] Rozum, J.; Albert, R., Leveraging network structure in nonlinear control, NPJ Syst Biol Appl, 8, 1, 36 (2022) · Zbl 1406.92253 [47] Saadatpour, A.; Albert, I.; Albert, R., Attractor analysis of asynchronous Boolean models of signal transduction networks, J Theor Biol, 266, 4, 641-56 (2010) · Zbl 1407.92058 [48] Saadatpour, A.; Wang, R-S; Liao, A.; Liu, X.; Loughran, TP; Albert, I.; Albert, R., Dynamical and structural analysis of a T cell survival network identifies novel candidate therapeutic targets for large granular lymphocyte leukemia, PLoS Comput Biol, 7, 11 (2011) [49] Saadatpour, A.; Albert, R.; Reluga, T., A reduction method for Boolean network models proven to conserve attractors, SIAM J Appl Dyn Syst, 12, 1997-2011 (2013) · Zbl 1308.92040 [50] Shmulevich, I.; Dougherty, ER; Kim, S.; Zhang, W., Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks, Bioinformatics, 18, 2, 261-274 (2002) [51] Shmulevich I, Dougherty ER (2010) Probabilistic Boolean networks: the modeling and control of gene regulatory networks. SIAM · Zbl 1320.92020 [52] Sutton, RS; Barto, AG, Reinforcement learning: an introduction (2018), Cambridge: MIT Press, Cambridge · Zbl 1407.68009 [53] Taylor, BP; Dushoff, J.; Weitz, JS, Stochasticity and the limits to confidence when estimating r0 of Ebola and other emerging infectious diseases, J Theor Biol, 408, 145-154 (2016) · Zbl 1352.92171 [54] Thomas, R., Boolean formalization of genetic control circuits, J Theor Biol, 42, 3, 563-585 (1973) [55] Veliz-Cuba, A., Reduction of Boolean network models, J Theor Biol, 289, 167-172 (2011) · Zbl 1397.92265 [56] Veliz-Cuba, A.; Aguilar, B.; Hinkelmann, F.; Laubenbacher, R., Steady state analysis of Boolean molecular network models via model reduction and computational algebra, BMC Bioinform, 15, 221 (2014) [57] Veliz-Cuba, A.; Voss, SR; Murrugarra, D., Building model prototypes from time-course data, Lett Biomath, 9, 1, 107-120 (2022) [58] Vieira, LS; Laubenbacher, RC; Murrugarra, D., Control of intracellular molecular networks using algebraic methods, Bull Math Biol, 82, 1, 1-22 (2020) · Zbl 1432.92040 [59] Waddington, CH, The strategy of the genes: a discussion of some aspects of theoretical biology (1957), London: Allen & Unwin, London [60] Yang, J-M; Lee, C-K; Cho, K-H, Stabilizing control of complex biological networks based on attractor-specific network reduction, IEEE Trans Control Netw Syst, 8, 2, 928-939 (2020) [61] Yang, J-M; Lee, C-K; Cho, K-H, Stabilizing control of complex biological networks based on attractor-specific network reduction, IEEE Trans Control Netw Syst, 8, 2, 928-939 (2021) [62] Yang G, Zañudo JGT, Albert R (2018) Target control in logical models using the domain of influence of nodes. Front Physiol 9 [63] Yousefi, MR; Datta, A.; Dougherty, ER, Optimal intervention strategies for therapeutic methods with fixed-length duration of drug effectiveness, IEEE Trans Signal Process, 60, 9, 4930-4944 (2012) · Zbl 1391.92016 [64] Zañudo, J.; Albert, R., An effective network reduction approach to find the dynamical repertoire of discrete dynamic networks, Chaos (Woodbury, NY), 23, 025111 (2013) · Zbl 1331.92055 [65] Zañudo, JGT; Albert, R., Cell fate reprogramming by control of intracellular network dynamics, PLoS Comput Biol, 11, 4 (2015) [66] Zañudo, JGT; Yang, G.; Albert, R., Structure-based control of complex networks with nonlinear dynamics, Proc Natl Acad Sci USA, 114, 28, 7234-7239 (2017) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.