×

A new torsional energy for pantographic sheets. (English) Zbl 1509.74039

Summary: Pantographic structures attracted the attention of scientists thanks to their interesting mechanical behaviors. Since the 3D printing technology allows to produce polyamide (PA) and metallic (ME) samples, different kinds of experiments can be carried out. In this work, a new torsional energy is proposed, which can predict the force-elongation curves of both PA and ME pantographic sheets under bias extensional tests more accurately than the energies currently proposed in the literature. The reliability of the proposed model is checked by means of experimental data collected by the authors for the ME pantographic sheets, while for the PA ones we refer to results already present in the literature.

MSC:

74K99 Thin bodies, structures
74Q15 Effective constitutive equations in solid mechanics
74P10 Optimization of other properties in solid mechanics
74-05 Experimental work for problems pertaining to mechanics of deformable solids
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Eremeyev, VA; Lebedev, LP; Altenbach, H., Foundations of Micropolar Mechanics (2013), Berlin: Springer, Berlin · Zbl 1257.74002
[2] Altenbach, J.; Altenbach, H.; Eremeyev, VA, On generalized Cosserat-type theories of plates and shells: a short review and bibliography, Arch. Appl. Mech., 80, 1, 73-92 (2010) · Zbl 1184.74042
[3] Turco, E.; dell’Isola, F.; Misra, A., A nonlinear lagrangian particle model for grains assemblies including grain relative rotations, Int. J. Numer. Anal. Methods Geomech., 43, 5, 1051-1079 (2019)
[4] Grammenoudis, P.; Tsakmakis, C., Micromorphic continuum. Part I: strain and stress tensors and their associated rates, Int. J. Non Linear Mech., 44, 9, 943-956 (2009)
[5] Frenzel, T.; Köpfler, J.; Jung, E.; Kadic, M.; Wegener, M., Ultrasound experiments on acoustical activity in chiral mechanical metamaterials, Nat. Commun., 10, 1, 1-6 (2019)
[6] Misra, A.; Nejadsadeghi, N.; De Angelo, M.; Placidi, L., Chiral metamaterial predicted by granular micromechanics: verified with 1D example synthesized using additive manufacturing, Continuum Mech. Thermodyn., 32, 5, 1497-1513 (2020)
[7] De Angelo, M.; Placidi, L.; Nejadsadeghi, N.; Misra, A., Non-standard Timoshenko beam model for chiral metamaterial: identification of stiffness parameters, Mech. Res. Commun., 103 (2020)
[8] Giorgio, I.; dell’Isola, F.; Misra, A., Chirality in 2D Cosserat media related to stretch-micro-rotation coupling with links to granular micromechanics, Int. J. Solids Struct., 202, 28-38 (2020)
[9] Turco, E., Forecasting nonlinear vibrations of patches of granular materials by elastic interactions between spheres, Mech. Res. Commun., 122 (2022)
[10] Misra, A.; Placidi, L.; dell’Isola, F.; Barchiesi, E., Identification of a geometrically nonlinear micromorphic continuum via granular micromechanics, Zeitschrift für angewandte Mathematik und Physik, 72, 4, 157 (2021) · Zbl 1470.74008
[11] dell’Isola, F.; Maier, G.; Perego, U.; Andreaus, U.; Esposito, R.; Forest, S., The Complete Works of Gabrio Piola: I (2016), Cham: Springer, Cham · Zbl 1305.74003
[12] dell’Isola, F.; Andreaus, U.; Cazzani, A.; Esposito, R.; Placidi, L.; Perego, U.; Maier, G.; Seppecher, P., The Complete Works of Gabrio Piola: II (2019), Cham: Springer, Cham · Zbl 1402.01035
[13] dell’Isola, F.; Andreaus, U.; Placidi, L., At the origins and in the vanguard of peridynamics, non-local and higher gradient continuum mechanics: an underestimated and still topical contribution of Gabrio Piola, Math. Mech. Solids, 20, 8, 887-928 (2015) · Zbl 1330.74006
[14] Auffray, N.; dell’Isola, F.; Eremeyev, VA; Madeo, A.; Rosi, G., Analytical continuum mechanics à la Hamilton-Piola least action principle for second gradient continua and capillary fluids, Math. Mech. Solids, 20, 4, 375-417 (2015) · Zbl 1327.76008
[15] Ciallella, A.; Steigmann, DJ, Unusual deformation patterns in a second-gradient cylindrical lattice shell: numerical experiments, Math. Mech. Solids (2022)
[16] Eugster, SR; dell’Isola, F.; Fedele, R.; Seppecher, P., Piola transformations in second-gradient continua, Mech. Res. Commun., 120 (2022)
[17] Solyaev, Y.; Lurie, S.; Altenbach, H.; dell’Isola, F., On the elastic wedge problem within simplified and incomplete strain gradient elasticity theories, Int. J. Solids Struct., 239-240 (2022)
[18] Fedele, R., Third-gradient continua: nonstandard equilibrium equations and selection of work conjugate variables, Math. Mech. Solids, 27, 10, 2046-2072 (2022) · Zbl 07619123
[19] Bertoldi, K.; Vitelli, V.; Christensen, J.; Van Hecke, M., Flexible mechanical metamaterials, Nat. Rev. Mater., 2, 11, 1-11 (2017)
[20] Seppecher, P.; Alibert, JJ; Lekszycki, T.; Grygoruk, R.; Pawlikowski, M.; Steigmann, D.; Giorgio, I.; Andreaus, U.; Turco, E.; Gołaszewski, M., Pantographic metamaterials: an example of mathematically driven design and of its technological challenges, Continuum Mech. Thermodyn., 31, 4, 851-884 (2019) · Zbl 07292361
[21] Ciallella, A., Research perspective on multiphysics and multiscale materials: a paradigmatic case, Continuum Mech. Thermodyn., 32, 3, 527-539 (2020) · Zbl 07252840
[22] dell’Isola, F.; Seppecher, P.; Spagnuolo, M., Advances in pantographic structures: design, manufacturing, models, experiments and image analyses, Continuum Mech. Thermodyn., 31, 4, 1231-1282 (2019) · Zbl 07292380
[23] Stilz, M.; Plappert, D.; Gutmann, F.; Hiermaier, S., A 3D extension of pantographic geometries to obtain metamaterial with semi-auxetic properties, Math. Mech. Solids, 27, 4, 673-686 (2022) · Zbl 07601669
[24] Alibert, J-J; Seppecher, P.; dell’Isola, F., Truss modular beams with deformation energy depending on higher displacement gradients, Math. Mech. Solids, 8, 1, 51-73 (2003) · Zbl 1039.74028
[25] Boutin, C.; dell’Isola, F.; Giorgio, I.; Placidi, L., Linear pantographic sheets: asymptotic micro-macro models identification, Math. Mech. Complex Syst., 5, 2, 127-162 (2017) · Zbl 1457.74171
[26] Barchiesi, E.; dell’Isola, F.; Laudato, M.; Placidi, L.; Seppecher, P.; dell’Isola, F.; Eremeyev, VA; Porubov, A., A 1D continuum model for beams with pantographic microstructure: asymptotic micro-macro identification and numerical results, Advances in Mechanics of Microstructured Media and Structures (2018), Cham: Springer, Cham
[27] Rahali, Y.; Giorgio, I.; Ganghoffer, J-F; dell’Isola, F., Homogenization à la Piola produces second gradient continuum models for linear pantographic lattices, Int. J. Eng. Sci., 97, 148-172 (2015) · Zbl 1423.74794
[28] Barchiesi, E.; dell’Isola, F.; Hild, F., On the validation of homogenized modeling for bi-pantographic metamaterials via digital image correlation, Int. J. Solids Struct., 208-209, 49-62 (2021)
[29] Barchiesi, E.; Eugster, SR; dell’Isola, F.; Hild, F., Large in-plane elastic deformations of bi-pantographic fabrics: asymptotic homogenization and experimental validation, Math. Mech. Solids, 25, 3, 739-767 (2020) · Zbl 1446.74171
[30] Ciallella, A.; Pasquali, D.; D’Annibale, F.; Giorgio, I., Shear rupture mechanism and dissipation phenomena in bias-extension test of pantographic sheets: numerical modeling and experiments, Math. Mech. Solids, 27, 10, 2170-2188 (2022) · Zbl 07619130
[31] Ciallella, A.; Pasquali, D.; Gołaszewski, M.; D’Annibale, F.; Giorgio, I., A rate-independent internal friction to describe the hysteretic behavior of pantographic structures under cyclic loads, Mech. Res. Commun., 116 (2021)
[32] Giorgio, I., Lattice shells composed of two families of curved Kirchhoff rods: an archetypal example, topology optimization of a cycloidal metamaterial, Continuum Mech. Thermodyn., 33, 4, 1063-1082 (2021)
[33] Ciallella, A., D’Annibale, F., Del Vescovo, D., Giorgio, I.: Deformation patterns in a second-gradient lattice annular plate composed of “spira mirabilis” fibers. Continuum Mech. Thermodyn. (2022)
[34] Greco, L., An iso-parametric \(G^1\)-conforming finite element for the nonlinear analysis of Kirchhoff rod. Part I: the 2D case, Continuum Mech. Thermodyn., 32, 5, 1473-1496 (2020)
[35] Giorgio, I.; Ciallella, A.; Scerrato, D., A study about the impact of the topological arrangement of fibers on fiber-reinforced composites: some guidelines aiming at the development of new ultra-stiff and ultra-soft metamaterials, Int. J. Solids Struct., 203, 73-83 (2020)
[36] Desmorat, B.; Spagnuolo, M.; Turco, E., Stiffness optimization in nonlinear pantographic structures, Math. Mech. Solids, 25, 12, 2252-2262 (2020) · Zbl 1482.74143
[37] Turco, E.; Barcz, K.; Pawlikowski, M.; Rizzi, NL, Non-standard coupled extensional and bending bias tests for planar pantographic lattices. Part I: numerical simulations, Zeitschrift für angewandte Mathematik und Physik, 67, 5, 122 (2016) · Zbl 1432.74156
[38] Turco, E.; Rizzi, NL, Pantographic structures presenting statistically distributed defects: numerical investigations of the effects on deformation fields, Mech. Res. Commun., 77, 65-69 (2016)
[39] La Valle, G.; Ciallella, A.; Falsone, G., The effect of local random defects on the response of pantographic sheets, Math. Mech. Solids, 27, 10, 2147-2169 (2022) · Zbl 07619129
[40] Placidi, L.; Andreaus, U.; Giorgio, I., Identification of two-dimensional pantographic structure via a linear D4 orthotropic second gradient elastic model, J. Eng. Math., 103, 1, 1-21 (2017) · Zbl 1390.74018
[41] De Angelo, M.; Barchiesi, E.; Giorgio, I.; Abali, BE, Numerical identification of constitutive parameters in reduced-order bi-dimensional models for pantographic structures: application to out-of-plane buckling, Arch. Appl. Mech., 89, 7, 1333-1358 (2019)
[42] Placidi, L.; Barchiesi, E.; Della Corte, A.; dell’Isola, F.; Sofonea, M.; Steigmann, D., Identification of two-dimensional pantographic structures with a linear D4 orthotropic second gradient elastic model accounting for external bulk double forces, Mathematical Modelling in Solid Mechanics, 211-232 (2017), Singapore: Springer, Singapore · Zbl 1387.74012
[43] Giorgio, I., Numerical identification procedure between a micro-Cauchy model and a macro-second gradient model for planar pantographic structures, Zeitschrift für angewandte Mathematik und Physik, 67, 4, 95 (2016) · Zbl 1359.74018
[44] Abali, BE; Yang, H.; Papadopoulos, P.; Altenbach, H.; Müller, W.; Abali, B., A computational approach for determination of parameters in generalized mechanics, Higher Gradient Materials and Related Generalized Continua, 1-18 (2019), Cham: Springer, Cham
[45] Yang, H.; Ganzosch, G.; Giorgio, I.; Abali, BE, Material characterization and computations of a polymeric metamaterial with a pantographic substructure, Zeitschrift für angewandte Mathematik und Physik, 69, 4, 105 (2018) · Zbl 1401.74016
[46] Barchiesi, E.; dell’Isola, F.; Seppecher, P.; Turco, E., A beam model for duoskelion structures derived by asymptotic homogenization and its application to axial loading problems, Eur. J. Mech.-A/Solids, 27 (2023) · Zbl 1514.74064
[47] dell’Isola, F.; Giorgio, I.; Pawlikowski, M.; Rizzi, NL, Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium, Proc. R. Soc. A: Math. Phys. Eng. Sci., 472, 2185, 20150790 (2016)
[48] Spagnuolo, M.; Yildizdag, ME; Andreaus, U.; Cazzani, A., Are higher-gradient models also capable of predicting mechanical behavior in the case of wide-knit pantographic structures?, Math. Mech. Solids, 26, 1, 18-29 (2021) · Zbl 1486.74005
[49] Spagnuolo, M.; Reccia, E.; Ciallella, A.; Cazzani, A., Matrix-embedded metamaterials: applications for the architectural heritage, Math. Mech. Solids, 27, 10, 2275-2286 (2022) · Zbl 07619136
[50] Andreaus, U.; Spagnuolo, M.; Lekszycki, T.; Eugster, SR, A Ritz approach for the static analysis of planar pantographic structures modeled with nonlinear Euler-Bernoulli beams, Continuum Mech. Thermodyn., 30, 5, 1103-1123 (2018) · Zbl 1396.74070
[51] Eremeyev, VA; Alzahrani, FS; Cazzani, A.; Hayat, T.; Turco, E.; Konopińska-Zmysłowska, V., On existence and uniqueness of weak solutions for linear pantographic beam lattices models, Continuum Mech. Thermodyn., 31, 1843-1861 (2019)
[52] Turco, E.; dell’Isola, F.; Cazzani, A.; Rizzi, NL, Hencky-type discrete model for pantographic structures: numerical comparison with second gradient continuum models, Zeitschrift für angewandte Mathematik und Physik, 67, 4, 85 (2016) · Zbl 1432.74158
[53] Turco, E.; Gołaszewski, M.; Cazzani, A.; Rizzi, NL, Large deformations induced in planar pantographic sheets by loads applied on fibers: experimental validation of a discrete lagrangian model, Mech. Res. Commun., 76, 51-56 (2016)
[54] Turco, E.; Misra, A.; Pawlikowski, M.; dell’Isola, F.; Hild, F., Enhanced Piola-Hencky discrete models for pantographic sheets with pivots without deformation energy: numerics and experiments, Int. J. Solids Struct., 147, 94-109 (2018)
[55] Stilz, M.; dell’Isola, F.; Giorgio, I.; Eremeyev, VA; Ganzenmüller, G.; Hiermaier, S., Continuum models for pantographic blocks with second gradient energies which are incomplete, Mech. Res. Commun., 120 (2022)
[56] Spagnuolo, M.; Barcz, K.; Pfaff, A.; Franciosi, P.; dell’Isola, F., Qualitative pivot damage analysis in aluminum printed pantographic sheets: numerics and experiments, Mech. Res. Commun., 83, 47-52 (2017)
[57] Spagnuolo, M., Yildizdag, M.E., Pinelli, X., Cazzani, A., Hild, F.: Out-of-plane deformation reduction via inelastic hinges in fibrous metamaterials and simplified damage approach. Math. Mech. Solids 27(6), 1011-1031 (2022) · Zbl 07601695
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.