Pyatkov, Sergeĭ Grigor’evich; Sokolkov, Oleg Igorevich On some classes of coefficient inverse problems of recovering thermophysical parameters in stratified media. (Russian. English summary) Zbl 1536.35382 Mat. Zamet. SVFU 30, No. 2, 56-74 (2023). Summary: We examine the question of regular solvability in Sobolev spaces of parabolic inverse coefficient problems in stratified media with conjugation conditions of the diffraction type. A solution has all generalized the derivatives occurring in the equation summable with some power. The overdetermination conditions are the values of the solution at some collection of points lying inside the domain. The proof is based on a priori estimates and the fixed point theorem. MSC: 35R30 Inverse problems for PDEs 35K20 Initial-boundary value problems for second-order parabolic equations Keywords:parabolic equation; inverse problem; initial-boundary value problem; existence; uniqueness × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Пермяков П. П. Идентификация параметров математической модели тепловлагоперено-са в мерзлых грунтах. Новосибирск: Наука, 1989. [2] Prilepko A. I., Orlovsky D. G., Vasin I. A. Methods for solving inverse problems in mathema-tical physics. New York: Marcel Dekker, 1999. · Zbl 0947.35173 [3] Belov Ya. Ya. Inverse problems for parabolic equations. Utrecht: VSP, 2002. · Zbl 1045.35001 [4] Isakov V. Inverse problems for partial differential equations. Berlin: Springer-Verl., 2006. (Appl. Math. Sci.; V. 127). · Zbl 1092.35001 [5] Kabanikhin S. I. Inverse and ill-posed problems. Theory and applications. Boston; Berlin: Walter de Gruyter, 2012 · Zbl 1247.65077 [6] Klibanov M. V., Li J. Inverse problems and Carleman estimates. Berlin; Boston: Walter de Gruyter, 2021. (Inverse Ill-Posed Probl. Ser.; V. 63). · Zbl 1481.35008 [7] Hussein M. S., Huntul M. J. Simultaneous identification of thermal conductivity and heat source in the heat equation // Iraqi J. Sci. 2021. V. 62, N 6. P. 1968-1978. [8] Hussein M. S., Lesnic D., Ivanchov M. I. Simultaneous determination of time-dependent co-efficients in the heat equation // Comput. Math. Appl. 2014. V. 67. P. 1065-1091. · Zbl 1350.65104 [9] Ivanchov M. Inverse problems for equations of parabolic type. Lviv: WNTL Publ., 2003. (Math. Stud. Monogr. Ser.; V. 10). · Zbl 1147.35110 [10] Иванчов Н. И., Пабыривска Н. В. Об определении двух зависящих от времени коэффи-циентов в параболическом уравнении // Сиб. мат. журн. 2002. Т. 43, № 2. С. 406-413. · Zbl 1007.35099 [11] Искендеров А. Д. Многомерные обратные задачи для линейных и квазилинейных пара-болических уравнений // Докл. АН СССР. 1975. Т. 225, № 5. С. 1005-1008. [12] Iskenderov A. D., Akhundov A. Ya. Inverse problem for a linear system of parabolic equa-tions // Dokl. Math. 2009. V. 79, N 1. P. 73-75. · Zbl 1256.35204 [13] Фроленков И. В., Романенко Г. В. О решении одной обратной задачи для многомерного параболического уравнения // Сиб. журн. индустр. математики. 2012. Т. 15, № 2. С. 139-146. [14] Pyatkov S. G., Samkov M. L. On some classes of coefficient inverse problems for parabolic systems of equations // Sib. Adv. Math. 2012. V. 22, N 4. P. 287-302. · Zbl 1340.35394 [15] Pyatkov S. G., Tsybikov B. N. On some classes of inverse problems for parabolic and elliptic equations // J. Evol. Equ. 2011. V. 11, N 1. P. 155-186. · Zbl 1239.35187 [16] Pyatkov S. G. On some classes of inverse problems for parabolic equations. // J. Inverse Ill-Posed Probl. 2011. V. 18, N 8. P. 917-934. · Zbl 1279.35123 [17] Pyatkov S. G. On some classes of inverse problems with overdetermination data on spatial manifolds // Sib. Math. J. 2016. V. 57, N 5. P. 870-880. · Zbl 1364.35438 [18] Pyatkov S. G., Rotko V. V. Inverse problems with pointwise overdetermination for some quasilinear parabolic systems // Sib. Adv. Math. 2020. V. 30, N 2. P. 124-142. [19] Pyatkov S. G., Rotko V. V. On some parabolic inverse problems with the pointwise overdeter-mination // AIP Conf. Proc. 2017. V. 1907. 020008. [20] Egger H., Pietschmann J.-F., Schlottbom M. Identification of nonlinear heat conduction laws // J. Inverse Ill-Posed Probl. 2015. V. 23, N 5. P. 429-437. · Zbl 1328.35306 [21] Pyatkov S. G. Identification of thermophysical parameters in mathematical models of heat and mass transfer // J. Comput. Eng. Math. 2022. V. 9, N 2. P. 52-66. · Zbl 1513.35547 [22] Samarskii A. A., Vabishchevich P. N. Numerical methods for solving inverse problems of mathematical physics. Berlin; Boston: Walter de Gruyter, 2007. · Zbl 1136.65105 [23] Алифанов О. М., Артюхин Е. А., Ненарокомов А. В. Обратные задачи в исследовании сложного теплообмена. М.: Янус-К, 2009. [24] Ozisik M. N., Orlande H. R. B. Inverse heat transfer. New York: Taylor & Francis, 2000. [25] Ткаченко В. Н. Математическое моделирование, идентификация и управление техноло-гическими процессами тепловой обработки материалов. Киев: Наук. думка, 2008. · Zbl 1240.93004 [26] Huntul M. J., Lesnic D. An inverse problem of finding the time-dependent thermal conducti-vity from boundary data // Int. Commun. Heat Mass Transfer. 2017. V. 85. P. 147-154. [27] Кабанихин С. И., Хасанов А. Х., Пененко А. В. Метод градиентного спуска для решения обратной коэффициентной задачи теплопроводности // Сиб. журн. вычисл. математики. 2008. Т. 11, № 1. С. 41-51. [28] Mustonen L. Numerical study of a parametric parabolic equation and a related inverse bound-ary value problem // Inverse Probl. 2016. V. 32. 105008. · Zbl 1353.65101 [29] Бушуев А. Ю., Тимофеев В. Н. Двухкритериальный подход к решению задачи иден-тификации теплофизических характеристик многослойной пластины // Инженерный журнал: наука и инновации. 2013. № 9. http://engjournal.ru/articles/963/963.pdf. [30] Быков Н. Ю., Хватов А. А., Калюжная А. В., Бухановский А. В. Метод восстановления моделей тепломассопереноса по пространственно-временным распределениям парамет-ров // Письма в ЖТФ. 2021. Т. 47, вып. 24. C. 9-12. [31] Triebel H. Interpolation theory. Function spaces. Differential operators. Berlin: VEB Deu-tscher Verl. Wiss., 1978. · Zbl 0387.46033 [32] Denk R., Hieber M., Prüss J. Optimal Lp-Lq-estimates for parabolic boundary value problems with inhomogeneous data // Math. Z. 2007. V. 257, N 1. P. 93-224. · Zbl 1210.35066 [33] Denk R., Hieber M., Prüss J. R-boundedness, Fourier multipliers, and problems of elliptic and parabolic type // Mem. Amer. Math. Soc. 2003. V. 166. N 788. · Zbl 1274.35002 [34] Ладыженская О. А., Солонников В. А., Уральцева Н. Н. Линейные и квазилинейные уравнения параболического типа. М.: Наука, 1967. · Zbl 0164.12302 [35] Amann H. Compact embeddings of vector-valued Sobolev and Besov spaces // Glasnik Mat. 2000. V. 35. P. 161-177. · Zbl 0997.46029 [36] Prüss J., Simonett G. Moving interfaces and quasilinear parabolic evolution equations. Basel: Birkhäuser, 2016. · Zbl 1435.35004 [37] Agranovich M. S., Vishik M. I. Elliptic problems with a parameter and parabolic problems of general type // Russ. Math. Surv. 1964. V. 19. P. 53-157. · Zbl 0137.29602 [38] Amann H. Maximal regularity of parabolic transmission problems // J. Evol. Equ. 2021. V. 21. P. 3375-3420. · Zbl 1483.35106 [39] Михайлов В. П. Дифференциальные уравнения в частных производных. М.: Наука, 1976. [40] Никольский С. М. Приближение функций многих переменных и теоремы вложения. М.: Наука, 1977. Поступила в редакцию 10 апреля 2023 г. После доработки 25 апреля 2023 г. Принята к публикации 29 мая 2023 г. [41] Пятков Сергей Григорьевич Югорский гос. университет, ул. Чехова, 16, Ханты-Мансийск 628012; [42] Академия наук Республики Саха (Якутия), пр. Ленина, 33, Якутск 677007 s pyatkov@ugrasu.ru Соколков Олег Игоревич Югорский гос. университет, ул. Чехова, 16, Ханты-Мансийск 628012 sokol.oleg2012@yandex.ru REFERENCES [43] Permyakov P. P., Identification of Parameters of the Mathematical Model of Heat and Mois-ture Transfer in Frozen Soils [in Russian], Nauka, Novosibirsk (1989). [44] Prilepko A. I., Orlovsky D. G., and Vasin I. A., Methods for Solving Inverse Problems in Mathematical Physics, Marcel Dekker, New York (1999). · Zbl 0947.35173 [45] Belov Ya. Ya., Inverse problems for Parabolic Equations, VSP, Utrecht (2002). · Zbl 1045.35001 [46] Isakov V., Inverse Problems for Partial Differential Equations, Springer, Berlin (2006) (Appl. Math. Sci.; vol. 127). · Zbl 1092.35001 [47] Kabanikhin S. I., Inverse and Ill-Posed Problems, Theory and Applications, Walter de Gruy-ter, Boston; Berlin (2012). · Zbl 1247.65077 [48] Klibanov M. V. and Li J., Inverse Problems and Carleman Estimates, Walter de Gruyter, Berlin; Boston (2021) (Inverse Ill-Posed Probl. Ser., vol. 63). · Zbl 1481.35008 [49] Hussein M. S. and Huntul M. J., “Simultaneous identification of thermal conductivity and heat source in the heat equation,” Iraqi J. Sci., 62, No. 6, 1968-1978 (2021). [50] Hussein M. S., Lesnic D., and Ivanchov M. I., “Simultaneous determination of time-dependent coefficients in the heat equation,” Comput. Math. Appl., 67, 1065-1091 (2014). · Zbl 1350.65104 [51] Ivanchov M., Inverse Problems for Equations of Parabolic Type, WNTL Publ., Lviv (2003) (Math. Stud. Monogr. Ser.; vol. 10). · Zbl 1147.35110 [52] Ivanchov N. I. and Pabyrivska N. V., “On determination of two time-dependent coefficients in a parabolic equation,” Sib. Math. J., 43, No. 2, 323-329 (2002). · Zbl 1007.35099 [53] Iskenderov A. L., “Multi-dimensional inverse problems for linear ans quasilinear parabolic equations [in Russian],” Dokl. AN SSSR, 225, No. 5, 1005-1008 (1975). [54] Iskenderov A. D. and Akhundov A. Ya., “Inverse problem for a linear system of parabolic equations,” Dokl. Math., 79, No. 1, 73-75 (2009). · Zbl 1256.35204 [55] Frolenkov I. V. and Romanenko G. V., “On a solution of an inverse problem for multi-dimansional parabolic equation [in Russian],” Sib. J. Ind. Math., 15, No. 2, 139-146 (2012). · Zbl 1324.35207 [56] Pyatkov S. G. and Samkov M. L., “On some classes of coefficient inverse problems for parabolic systems of equations,” Sib. Adv. Math., 22, No. 4, 287-302 (2012). · Zbl 1340.35394 [57] c 2023 S. G. Pyatkov, O. I. Sokolkov [58] Pyatkov S. G. and Tsybikov B. N., “On some classes of inverse problems for parabolic and elliptic equations,” J. Evol. Equ., 11, No. 1, 155-186 (2011). · Zbl 1239.35187 [59] Pyatkov S. G., “On some classes of inverse problems for parabolic equations,” J. Inverse Ill-Posed Probl., 18, No. 8, 917-934 (2011). · Zbl 1279.35123 [60] Pyatkov S. G., “On some classes of inverse problems with overdetermination data on spatial manifolds,” Sib. Math. J., 57, No. 5, 870-880 (2016). · Zbl 1364.35438 [61] Pyatkov S. G. and Rotko V. V., “Inverse problems with pointwise overdetermination for some quasilinear parabolic systems,” Sib. Adv. Math., 30, No. 2, 124-142 (2020). [62] Pyatkov S. G. and Rotko V. V., “On some parabolic inverse problems with the pointwise overdetermination,” AIP Conf. Proc., 1907, 020008 (2017). [63] Egger H., Pietschmann J.-F., and Schlottbom M., “Identification of nonlinear heat conduction laws,” J. Inverse Ill-Posed Probl., 23, No. 5, 429-437 (2015). · Zbl 1328.35306 [64] Pyatkov S. G., “Identification of thermophysical parameters in mathematical models of heat and mass transfer,” J. Comput. Eng. Math., 9, No. 2, 52-66 (2022). · Zbl 1513.35547 [65] Samarskii A. A. and Vabishchevich P. N., Numerical Methods for Solving Inverse Problems of Mathematical Physics, Walter de Gruyter, Berlin; Boston (2007). · Zbl 1136.65105 [66] Alifanov O. M., Artyukhov E. A., and Nenarokom A. V., Inverse problems of Complex Heat Transfer [in Russian], Yanus-K, Moscow (2009). [67] Ozisik M. N. and Orlande H. R. B., Inverse Heat Transfer, Taylor & Francis, New York (2000). [68] Tkachenko V. N., Mathematical Modeling, Identification and Control of Technological Pro-cesses of Heat Treatment of Materials [in Russian], Naukova Dumka, Kiev (2008). · Zbl 1240.93004 [69] Huntul M. J. and Lesnic D., “An inverse problem of finding the time-dependent thermal conductivity from boundary data,” Int. Commun. Heat Mass Transfer, 85, 147-154 (2017). [70] Kabanikhin S. I., Hasanov A., and Penenko A. V., “A gradient descent method for solving an inverse coefficient heat conduction problem,” Numer. Anal. Appl., 1, No. 1, 34-45 (2008). · Zbl 1212.65356 [71] Mustonen L., “Numerical study of a parametric parabolic equation and a related inverse boundary value problem,” Inverse Probl., 32, 105008 (2016). · Zbl 1353.65101 [72] Bushuev A. Yu. and Timofeev V. N., “Two parameters approach to solving the problem of identification of thermophysical characteristics of multilayer plate,” Eng. J. Sci. Innov., 9 (2013). http://engjournal.ru/articles/963/963.pdf [73] Bykov N. Yu., Khvatov A. A., Kalyuzhnaya A. V., and Bukhanovskii A. V., “The method of recovering mathematical models of heat and mass transfer with space and temporal distribu-tions of parameters [in Russian],” Lett. JTP, 47, No. 24, 9-12 (2021). [74] Triebel H., Interpolation Theory, Function Spaces, Differential Operators, VEB Deutscher Verl. Wiss., Berlin (1978). · Zbl 0387.46033 [75] Denk R., Hieber M., and Prüss J., “Optimal Lp-Lq-estimates for parabolic boundary value problems with inhomogeneous data,” Math. Z., 257, No. 1, 193-224 (2007). · Zbl 1210.35066 [76] Denk R., Hieber M., and Prüss J., “R-boundedness, Fourier multipliers and problems of elliptic and parabolic type,” Mem. Amer. Math. Soc., 166, No. 788 (2003). · Zbl 1274.35002 [77] Ladyzhenskaya O. A., Solonnikov V. A., and Uraltseva N. N., Linear and Quasilinear Equa-tions of Parabolic Type, Amer. Math. Soc., Providence (1968). · Zbl 0174.15403 [78] Amann H., “Compact embeddings of vector-valued Sobolev and Besov spaces,” Glasnik Mat., 35, 161-177 (2000). · Zbl 0997.46029 [79] Prüss J. and Simonett G., Moving Interfaces and Quasilinear Parabolic Evolution Equations, Birkhäuser, Basel (2016). · Zbl 1435.35004 [80] Agranovich M. S. and Vishik M. I., “Elliptic problems with a parameter and parabolic prob-lems of general type,” Russ. Math. Surv., 19, 53-157 (1964). · Zbl 0137.29602 [81] Amann H., “Maximal regularity of parabolic transmission problems,” J. Evol. Equ., 21, 3375-3420 ( 2021). · Zbl 1483.35106 [82] Mikhailov V. P., Partial Differential Equations [in Russian], Nauka, Moscow (1976) . · Zbl 0388.35002 [83] Nikolskii S. M., Approximation of Functions of Several Variables and Imbedding Theorems, · Zbl 0910.42011 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.