×

An extremely non-homogeneous weak Hilbert space. (English) Zbl 1281.46012

A Banach space \(X\) is called a weak Hilbert space provided that there are \(C,\delta>0\) such that any finite-dimensional subspace \(E\) of \(X\) contains a further subspace \(F\) with the following properties: \(\dim F\geq \delta \dim E\), \(F\) is \(C\)-complemented in \(X\), and the Banach-Mazur distance between \(F\) and \(\ell_2^{\dim F}\) is at most \(C\). The notion originated in papers by V. D. Milman and G. Pisier [Isr. J. Math. 54, 139–158 (1986; Zbl 0611.46022)] and G. Pisier [Proc. Lond. Math. Soc., III. Ser. 56, No. 3, 547–579 (1988; Zbl 0666.46009)]. The class of weak Hilbert spaces shares many regular properties of Hilbert spaces, in particular, it is closed under taking subspaces, quotients and duals, and every weak Hilbert space is superreflexive. However, there are examples of weak Hilbert spaces not containing \(\ell_2\); the canonical example is the convexified Tsirelson space [W. B. Johnson, Stud. Math. 55, 201–205 (1976; Zbl 0362.46015)]. A natural question concerns the regularity of the global structure of weak Hilbert spaces.
The authors present an example of a weak Hilbert space with extremely non-homogeneous global structure. The constructed Banach space \(X_{wh}\) with an unconditional basis shares the following properties: (1) \(X_{wh}\) is strongly asymptotic \(\ell_2\), which ensures that \(X_{wh}\) is weak Hilbert. (2) For any block subspace \(Y\) of \(X_{wh}\), any bounded operator on \(Y\) is a strictly singular perturbation of a restriction of a diagonal operator on \(X_{wh}\), in particular: (3) None of the block subspaces of \(X_{wh}\) is isomorphic to one of its proper subspaces. (4) No disjointly supported subspaces of \(X_{wh}\) are isomorphic, i.e., \(X_{wh}\) is tight by support.
The technical construction of the space \(X_{wh}\) uses the framework of spaces with non-regular properties built on the basis of mixed Tsirelson spaces. The underlying modified mixed Tsirelson space, defined with the help of Schreier families, ensures the strong asymptotic \(\ell_2\) structure of \(X_{wh}\), in a similar manner to the case of the hereditarily indecomposable strongly asymptotic \(\ell_1\) space of S.A. Argyros, I. Deliyanni, D. N. Kutzarova and A. Manoussakis [J. Funct. Anal. 159, No. 1, 43–109 (1998; Zbl 0931.46017)]. The strong non-homogeneous structure of \(X_{wh}\), described in properties (2)–(4), is guaranteed by the use of a coding function. Coding functions, introduced by B. Maurey and H. P. Rosenthal [Stud. Math. 61, 77–98 (1977; Zbl 0357.46025)] in the construction of a weakly null sequence with no unconditional subsequence, became the crucial tool in building spaces with few operators or few symmetries. In the unconditional setting, coding functions were first used by W. T. Gowers [Bull. Lond. Math. Soc. 26, No. 6, 523–530 (1994; Zbl 0838.46011)] in his solution of the Banach hyperplane problem.
The authors recall an open question of P.Casazza (cf.[G. Androulakis et al., Can. Math. Bull. 43, No. 3, 257–267 (2000; Zbl 0977.46007)]), whether there exists a hereditarily indecomposable weak Hilbert space.

MSC:

46B06 Asymptotic theory of Banach spaces
46B07 Local theory of Banach spaces
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] G. Androulakis and K. Beanland, A hereditarily indecomposable asymptotic \?\(_{2}\) Banach space, Glasg. Math. J. 48 (2006), no. 3, 503 – 532. · Zbl 1121.46007 · doi:10.1017/S0017089506003193
[2] George Androulakis, Peter G. Casazza, and Denka N. Kutzarova, Some more weak Hilbert spaces, Canad. Math. Bull. 43 (2000), no. 3, 257 – 267. · Zbl 0977.46007 · doi:10.4153/CMB-2000-033-0
[3] Razvan Anisca, An irregularity in the class of weak Hilbert spaces, Illinois J. Math. 51 (2007), no. 2, 379 – 395. · Zbl 1136.46004
[4] Spiros A. Argyros, Kevin Beanland, and Theocharis Raikoftsalis, A weak Hilbert space with few symmetries, C. R. Math. Acad. Sci. Paris 348 (2010), no. 23-24, 1293 – 1296 (English, with English and French summaries). · Zbl 1208.46012 · doi:10.1016/j.crma.2010.10.032
[5] S. A. Argyros, I. Deliyanni, D. N. Kutzarova, and A. Manoussakis, Modified mixed Tsirelson spaces, J. Funct. Anal. 159 (1998), no. 1, 43 – 109. · Zbl 0931.46017 · doi:10.1006/jfan.1998.3310
[6] S. A. Argyros, I. Deliyanni, and A. Manoussakis, Distortion and spreading models in modified mixed Tsirelson spaces, Studia Math. 157 (2003), no. 3, 199 – 236. · Zbl 1028.46019 · doi:10.4064/sm157-3-1
[7] S. A. Argyros, J. Lopez-Abad, and S. Todorcevic, A class of Banach spaces with few non-strictly singular operators, J. Funct. Anal. 222 (2005), no. 2, 306 – 384. · Zbl 1086.46005 · doi:10.1016/j.jfa.2004.11.001
[8] S. A. Argyros, S. Mercourakis, and A. Tsarpalias, Convex unconditionality and summability of weakly null sequences, Israel J. Math. 107 (1998), 157 – 193. · Zbl 0942.46007 · doi:10.1007/BF02764008
[9] Spiros A. Argyros and Andreas Tolias, Methods in the theory of hereditarily indecomposable Banach spaces, Mem. Amer. Math. Soc. 170 (2004), no. 806, vi+114. · Zbl 1055.46004 · doi:10.1090/memo/0806
[10] Peter G. Casazza and Thaddeus J. Shura, Tsirel\(^{\prime}\)son’s space, Lecture Notes in Mathematics, vol. 1363, Springer-Verlag, Berlin, 1989. With an appendix by J. Baker, O. Slotterbeck and R. Aron. · Zbl 0709.46008
[11] Irene Deliyanni and Antonis Manoussakis, Asymptotic \?_{\?} hereditarily indecomposable Banach spaces, Illinois J. Math. 51 (2007), no. 3, 767 – 803. · Zbl 1160.46006
[12] S. J. Dilworth, V. Ferenczi, Denka Kutzarova, and E. Odell, On strongly asymptotic \?_{\?} spaces and minimality, J. Lond. Math. Soc. (2) 75 (2007), no. 2, 409 – 419. · Zbl 1139.46013 · doi:10.1112/jlms/jdm003
[13] Alec Edgington, Some more weak Hilbert spaces, Studia Math. 100 (1991), no. 1, 1 – 11. · Zbl 0763.46011
[14] Valentin Ferenczi and Christian Rosendal, Banach spaces without minimal subspaces, J. Funct. Anal. 257 (2009), no. 1, 149 – 193. · Zbl 1181.46004 · doi:10.1016/j.jfa.2009.01.028
[15] I. Gasparis, Strictly singular non-compact operators on hereditarily indecomposable Banach spaces, Proc. Amer. Math. Soc. 131 (2003), no. 4, 1181 – 1189. · Zbl 1019.46006
[16] W. T. Gowers, A solution to Banach’s hyperplane problem, Bull. London Math. Soc. 26 (1994), no. 6, 523 – 530. · Zbl 0838.46011 · doi:10.1112/blms/26.6.523
[17] W. T. Gowers and B. Maurey, Banach spaces with small spaces of operators, Math. Ann. 307 (1997), no. 4, 543 – 568. · Zbl 0876.46006 · doi:10.1007/s002080050050
[18] Alexander Grothendieck, La théorie des classes de Chern, Bull. Soc. Math. France 86 (1958), 137 – 154 (French). · Zbl 0091.33201
[19] William B. Johnson, A reflexive Banach space which is not sufficiently Euclidean, Studia Math. 55 (1976), no. 2, 201 – 205. · Zbl 0362.46015
[20] W. B. Johnson, Banach spaces all of whose subspaces have the approximation property, Seminar on Functional Analysis, 1979 – 1980 (French), École Polytech., Palaiseau, 1980, pp. Exp. No. 16, 11.
[21] Ryszard A. Komorowski and Nicole Tomczak-Jaegermann, Banach spaces without local unconditional structure, Israel J. Math. 89 (1995), no. 1-3, 205 – 226. · Zbl 0830.46008 · doi:10.1007/BF02808201
[22] Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. I, Springer-Verlag, Berlin-New York, 1977. Sequence spaces; Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 92. · Zbl 0362.46013
[23] A. Manoussakis, On the structure of a certain class of mixed Tsirelson spaces, Positivity 5 (2001), no. 3, 193 – 238. · Zbl 0988.46009 · doi:10.1023/A:1011456204116
[24] B. Maurey and H. P. Rosenthal, Normalized weakly null sequence with no unconditional subsequence, Studia Math. 61 (1977), no. 1, 77 – 98. · Zbl 0357.46025
[25] Vitali D. Milman and Gilles Pisier, Banach spaces with a weak cotype 2 property, Israel J. Math. 54 (1986), no. 2, 139 – 158. · Zbl 0611.46022 · doi:10.1007/BF02764939
[26] N. J. Nielsen and N. Tomczak-Jaegermann, Banach lattices with property (H) and weak Hilbert spaces, Illinois J. Math. 36 (1992), no. 3, 345 – 371. · Zbl 0787.46018
[27] Gilles Pisier, Weak Hilbert spaces, Proc. London Math. Soc. (3) 56 (1988), no. 3, 547 – 579. · Zbl 0666.46009 · doi:10.1112/plms/s3-56.3.547
[28] Gilles Pisier, The volume of convex bodies and Banach space geometry, Cambridge Tracts in Mathematics, vol. 94, Cambridge University Press, Cambridge, 1989. · Zbl 0698.46008
[29] Thomas Schlumprecht, An arbitrarily distortable Banach space, Israel J. Math. 76 (1991), no. 1-2, 81 – 95. · Zbl 0796.46007 · doi:10.1007/BF02782845
[30] Adi Tcaciuc, On the existence of asymptotic-\?_{\?} structures in Banach spaces, Canad. Math. Bull. 50 (2007), no. 4, 619 – 631. · Zbl 1156.46014 · doi:10.4153/CMB-2007-061-3
[31] B. S. Cirel\(^{\prime}\)son, It is impossible to imbed \ell _{\?} or \?\(_{0}\) into an arbitrary Banach space, Funkcional. Anal. i Priložen. 8 (1974), no. 2, 57 – 60 (Russian).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.