Hare, Kathryn E.; Rutar, Alex Local dimensions of self-similar measures satisfying the finite neighbour condition. (English) Zbl 1514.28007 Nonlinearity 35, No. 9, 4876-4904 (2022). The authors investigate sets of local dimensions for self-similar measures in \(\mathbb{R}\) satisfying the so-called finite neighbour condition, which is formally stronger than the weak separation condition (WSC) but satisfied in all known examples. Under a mild technical assumption, we establish that the set of attainable local dimensions is a finite union of (possibly singleton) compact intervals. The number of intervals is bounded above by the number of non-trivial maximal strongly connected components of a finite directed graph construction depending only on the governing iterated function system. Additionally, an explanation of how these results allow computations of the sets of local dimensions in many explicit cases is given. These results contextualize and generalize a vast amount of prior work on sets of local dimensions for self-similar measures satisfying the WSC. Reviewer: Peter Massopust (München) Cited in 1 Document MSC: 28A80 Fractals Keywords:iterated function system; self-similar; local dimension; multifractal analysis; weak separation condition × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Cawley, R.; Mauldin, R. D., Multifractal decompositions of Moran fractals, Adv. Math., 92, 196-236 (1992) · Zbl 0763.58018 · doi:10.1016/0001-8708(92)90064-r [2] Feng, D-J, Lyapunov exponents for products of matrices and multifractal analysis: I. Positive matrices, Isr. J. Math., 138, 353-376 (2003) · Zbl 1037.37023 · doi:10.1007/bf02783432 [3] Feng, D-J, Smoothness of the L^q-spectrum of self-similar measures with overlaps, J. London Math. Soc., 68, 102-118 (2003) · Zbl 1041.28004 · doi:10.1112/s002461070300437x [4] Feng, D-J, The limited Rademacher functions and Bernoulli convolutions associated with Pisot numbers, Adv. Math., 195, 24-101 (2005) · Zbl 1078.11062 · doi:10.1016/j.aim.2004.06.011 [5] Feng, D-J, Lyapunov exponents for products of matrices and multifractal analysis: II. General matrices, Isr. J. Math., 170, 355-394 (2009) · Zbl 1181.37073 · doi:10.1007/s11856-009-0033-x [6] Feng, D-J; Lau, K-S, The pressure function for products of non-negative matrices, Math. Res. Lett., 9, 363-378 (2002) · Zbl 1116.37302 · doi:10.4310/mrl.2002.v9.n3.a10 [7] Feng, D-J; Lau, K-S, Multifractal formalism for self-similar measures with weak separation condition, J. Math. Pures Appl., 92, 407-428 (2009) · Zbl 1184.28009 · doi:10.1016/j.matpur.2009.05.009 [8] Hare, K. E.; Hare, K. G., Local dimensions of overlapping self-similar measures, Real Anal. Exch., 44, 247 (2019) · Zbl 1440.28010 · doi:10.14321/realanalexch.44.2.0247 [9] Hare, K. E.; Hare, K. G.; Matthews, K. R., Local dimensions of measures of finite type: appendix (2015) [10] Hare, K.; Hare, K.; Matthews, K., Local dimensions of measures of finite type, J. Fractal Geom., 3, 331-376 (2016) · Zbl 1396.28011 · doi:10.4171/jfg/39 [11] Hare, K. E.; Hare, K. G.; Shing Ng, M. K., Local dimensions of measures of finite type II: measures without full support and with non-regular probabilities, Can. J. Math., 70, 824-867 (2018) · Zbl 1457.28008 · doi:10.4153/cjm-2017-025-6 [12] Hare, K.; Hare, K.; Rutar, A., When the weak separation condition implies the generalized finite type condition, Proc. Am. Math. Soc., 149, 1555-1568 (2021) · Zbl 1466.28010 · doi:10.1090/proc/15307 [13] Hentschel, H. G E.; Procaccia, I., The infinite number of generalized dimensions of fractals and strange attractors, Physica D, 8, 435-444 (1983) · Zbl 0538.58026 · doi:10.1016/0167-2789(83)90235-x [14] Hille, E.; Phillips, R. S., Functional Analysis and Semi-groups (1957), Providence, RI: American Mathematical Society, Providence, RI · Zbl 0078.10004 [15] Hu, T-Y; Lau, K-S, Multifractal structure of convolution of the Cantor measure, Adv. Appl. Math., 27, 1-16 (2001) · Zbl 0991.28008 · doi:10.1006/aama.2000.0683 [16] Lau, K-S; Ngai, S-M, Multifractal measures and a weak separation condition, Adv. Math., 141, 45-96 (1999) · Zbl 0929.28007 · doi:10.1006/aima.1998.1773 [17] Lau, K-S; Ngai, S-M, A generalized finite type condition for iterated function systems, Adv. Math., 208, 647-671 (2007) · Zbl 1113.28006 · doi:10.1016/j.aim.2006.03.007 [18] Lau, K-S; Wang, X-Y, Iterated function systems with a weak separation condition, Stud. Math., 161, 249-268 (2004) · Zbl 1062.28009 · doi:10.4064/sm161-3-3 [19] Ngai, S-M; Wang, Y., Hausdorff dimension of self-similar sets with overlaps, J. London Math. Soc., 63, 655-672 (2001) · Zbl 1013.28008 · doi:10.1017/s0024610701001946 [20] Patzschke, N., Self-conformal multifractal measures, Adv. Appl. Math., 19, 486-513 (1997) · Zbl 0912.28007 · doi:10.1006/aama.1997.0557 [21] Rutar, A., Geometric and combinatorial properties of self-similar multifractal measures, Ergod. Theor. Dynam. Syst. · Zbl 07682668 [22] Shmerkin, P., A modified multifractal formalism for a class of self-similar measures with overlap, Asian J. Math., 9, 323-348 (2005) · Zbl 1091.28007 · doi:10.4310/ajm.2005.v9.n3.a3 [23] Testud, B., Phase transitions for the multifractal analysis of self-similar measures, Nonlinearity, 19, 1201-1217 (2006) · Zbl 1093.28007 · doi:10.1088/0951-7715/19/5/009 [24] Varjú, P. P., Recent progress on Bernoulli convolutions, Proceedings of the 7th European Congress of Mathematics (2018) · doi:10.17863/CAM.17352 [25] Zerner, M., Weak separation properties for self-similar sets, Proc. Am. Math. Soc., 124, 3529-3539 (1996) · Zbl 0874.54025 · doi:10.1090/s0002-9939-96-03527-7 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.