×

Bimeromorphic geometry of LCK manifolds. (English) Zbl 1533.32007

Summary: A locally conformally Kähler (LCK) manifold is a complex manifold \(M\) which has a Kähler structure on its cover, such that the deck transform group acts on it by homotheties. Assume that the Kähler form is exact on the minimal Kähler cover of \(M\). We prove that any bimeromorphic map \(M'\rightarrow M\) is in fact holomorphic; in other words, \(M\) has a unique minimal model. This can be applied to a wide class of LCK manifolds, such as the Hopf manifolds, their complex submanifolds and to OT manifolds.

MSC:

32H04 Meromorphic mappings in several complex variables
53C55 Global differential geometry of Hermitian and Kählerian manifolds
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Belgun, Florin Alexandru, On the metric structure of non-K\"{a}hler complex surfaces, Math. Ann., 1-40 (2000) · Zbl 0988.32017 · doi:10.1007/s002080050357
[2] Campana, F., On twistor spaces of the class \(\mathcal{C} \), J. Differential Geom., 541-549 (1991) · Zbl 0694.32017
[3] J.-P. Demailly, Complex analytic and differential geometry, https://www-fourier.ujf-grenoble.fr/ demailly/manuscripts/agbook.pdf
[4] Gauduchon, P., Locally conformally K\"{a}hler metrics on Hopf surfaces, Ann. Inst. Fourier (Grenoble), 1107-1127 (1998) · Zbl 0917.53025
[5] Greuel, G.-M., Introduction to singularities and deformations, Springer Monographs in Mathematics, xii+471 pp. (2007), Springer, Berlin · Zbl 1125.32013
[6] H\"{o}ring, Andreas, Algebraic geometry: Salt Lake City 2015. Bimeromorphic geometry of K\"{a}hler threefolds, Proc. Sympos. Pure Math., 381-402 (2018), Amer. Math. Soc., Providence, RI · Zbl 1446.32013 · doi:10.1090/pspum/097.1/13
[7] Inoue, Masahisa, On surfaces of Class \(\text{VII}_0 \), Invent. Math., 269-310 (1974) · Zbl 0283.32019 · doi:10.1007/BF01425563
[8] Istrati, Nicolina, On a class of Kato manifolds, Int. Math. Res. Not. IMRN, 5366-5412 (2021) · Zbl 1477.32033 · doi:10.1093/imrn/rnz354
[9] Koll\'{a}r, J\'{a}nos, Shafarevich maps and plurigenera of algebraic varieties, Invent. Math., 177-215 (1993) · Zbl 0819.14006 · doi:10.1007/BF01244307
[10] Koll\'{a}r, J\'{a}nos, Fundamental groups of rationally connected varieties, Michigan Math. J., 359-368 (2000) · Zbl 1077.14520 · doi:10.1307/mmj/1030132724
[11] K. Matsuki, Lectures on factorization of birational maps, 0002084, 2000.
[12] Oeljeklaus, Karl, Non-K\"{a}hler compact complex manifolds associated to number fields, Ann. Inst. Fourier (Grenoble), 161-171 (2005) · Zbl 1071.32017
[13] Ornea, Liviu, Locally conformal K\"{a}hler manifolds with potential, Math. Ann., 25-33 (2010) · Zbl 1213.53090 · doi:10.1007/s00208-009-0463-0
[14] Ornea, Liviu, Locally conformally K\"{a}hler metrics obtained from pseudoconvex shells, Proc. Amer. Math. Soc., 325-335 (2016) · Zbl 1327.53098 · doi:10.1090/proc12770
[15] Ornea, Liviu, Complex and symplectic geometry. Embedding of LCK manifolds with potential into Hopf manifolds using Riesz-Schauder theorem, Springer INdAM Ser., 137-148 (2017), Springer, Cham · Zbl 1391.32034
[16] L. Ornea, M. Verbitsky, Principles of locally conformally K\"ahler geometry, 2208.07188, 2022. · Zbl 1518.53019
[17] Ornea, Liviu, Non-linear Hopf manifolds are locally conformally K\"{a}hler, J. Geom. Anal., Paper No. 201, 10 pp. (2023) · Zbl 1523.32045 · doi:10.1007/s12220-023-01273-2
[18] Remmert, R., Several complex variables, VII. Local theory of complex spaces, Encyclopaedia Math. Sci., 7-96 (1994), Springer, Berlin · Zbl 0808.32008 · doi:10.1007/978-3-662-09873-8\_2
[19] A. Grothendieck, Rev\'etements \'etales et groupe fondamental, LNM 224, Springer, 1971.
[20] Tricerri, Franco, Some examples of locally conformal K\"{a}hler manifolds, Rend. Sem. Mat. Univ. Politec. Torino, 81-92 (1982) · Zbl 0511.53068
[21] Vaisman, Izu, On locally conformal almost K\"{a}hler manifolds, Israel J. Math., 338-351 (1976) · Zbl 0335.53055 · doi:10.1007/BF02834764
[22] Vaisman, Izu, On locally and globally conformal K\"{a}hler manifolds, Trans. Amer. Math. Soc., 533-542 (1980) · Zbl 0446.53048 · doi:10.2307/1999844
[23] Verbitsky, M. S., Classification of non-K\"{a}hler surfaces and locally conformally K\"{a}hler geometry, Russian Math. Surveys. Uspekhi Mat. Nauk, 71-102 (2021) · Zbl 1471.32023 · doi:10.4213/rm9858
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.